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Introduction

Stochastic programming
» Model uncertainty through the analysis of possible future
scenarios
» Alternating sequence of decisions and random realisations
» Robust decision making

» And much morel
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Event tree

1YY

To each node of the tree we associate:
» a set of constraints
» an objective function

» the conditional probability of visit from the parent node
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Notation

t stage
I index of a node of stage t
a(l¢) ancestor of node /¢
n' node data: {T', Wk n't g’ p'}

Model of the dynamics of the system (at node /;):
min Zplt(q/t)Txlt
It
st Thxalh) | Whyk = g

x>0
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Complete deterministic equivalent formulation

Lo Ly
min  (g")Txh + Y pP(a?)TxE + 4+ D plT(gm)TXT
h=L1+1 lr=L7_1+1
SH Whxh — ph

Thx! 4+ Whxh = p” h=1L+1,..., Lo,

Thxalr) 4 Wirxlr= pir It =Lr_1+1,..., LT,
x>0 le=1,...,LT.
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Structure of the deterministic equivalent

Breadth-first ordering Depth-first ordering
_ A warm-start approach for stochastic linear programs
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The curse of dimensions

The deterministic equivalent formulation produces problems of
extremely large size, even when starting from a small core.

Example: fxm rows cols  nonzeros
Deterministic model: 330 457 2,566
3 stages, 6 nodes: 6,200 9,492 54,589

4 stages, 16 nodes: 386,940 517,282 4,518,039

» A detailed description produces robust decisions
» Detailed event trees can be very large

» The dimensions involved explode

However, remember the presence of structure!

Marco Colombo, Jacek Gondzio, Andreas Grothey A warm-start approach for stochastic linear programs
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The way forward

Enter interior point methods:

» |IPM solvers are available in the community
(CPLEX Barrier, PCx, HOPDM, etc.)

» Competitiveness of IPMs grows with the problem size

» Parallel implementations are possible

And we can exploit the structure:
» Linear algebra: structure-exploiting parallel software OOPS

» Algorithmically: warm-start for stochastic problems in IPMs
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OOPS - Object Oriented Parallel (Interior Point) Solver

OOPS is a parallel IPM LP/QP solver (with NLP extensions) that
can exploit the structure in the linear algebra.

Key advantages of exploiting the structure in the problem:
» Faster linear algebra

» Reduced memory use (by use of implicit factorization)
» Possibility to exploit (massive) parallelism

» Assumption that the structure is known

Talk by Andreas Grothey in session FA2.
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Linear programming and optimality conditions

Karush-Kuhn-Tucker (KKT) conditions for optimality for an LP:

Ax—b = 0 Ax — b 0

Aly+s—c = 0 Aly+s—c|=| 0

Viixs = 0 XSe 0
x,s > 0 x,s >0
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Linear programming and optimality conditions

Karush-Kuhn-Tucker (KKT) conditions for optimality for an LP:

Ax—b = 0 Ax —b 0

Aly+s—c = 0 Aly+s—c | =] 0

Vi: xisi = p = XSe e
x,s > 0 x,s >0

IPMs perturb the complementarity conditions and solve a sequence
of problems parametrised by /.

As 11 — 0 the solution traces a continuous path from the starting
point to the optimal solution (central path).
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Centrality

IPMs follow the central path to find the optimal solution.

AN AN

Polynomial complexity:
in theory: O(+y/n) or O(n) iterations

in practice: O(In n) iterations



Derivation and basic ideas
Warm-start strategies

Good behaviour and bad behaviour

AN

Good:
» central starting point

» remain in the neighbourhood of the
central path in all iterations
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Good behaviour and bad behaviour

AN
Good:
» central starting point
> remain in the neighbourhood of the
central path in all iterations
AN
Bad:
> iterate close to the boundary
> many iterations spent in retrieving
centrality before converging
~ Marco Colombo, Jacek Gondzio, Andreas Grothey

A warm-start approach for stochastic linear programs
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Warm-start strategies

A warm-start strategy uses the solution to a problem instance to
initialise the next problem.

» Important if we are solving a sequence of problems

» The solution to one problem is close to the solution of the next

» Reduced computational time from an advanced starting point

Common understanding:
» Warm-start is good with the simplex method
» Warm-start is bad with IPMs (?)
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Warm-start with the simplex method
The solution of a problem is a vertex:

AN

» ideal starting point for the modified instance



Derivation and basic ideas
Warm-start strategies

Warm-start with the simplex method
The solution of a problem is a vertex:

AN

» ideal starting point for the modified instance

» optimality recovered in a few (very cheap) iterations
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The solution of a problem is arbitrarily close to a vertex:

AN

» worst possible starting point
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Warm-start with interior point methods

The solution of a problem is arbitrarily close to a vertex:

AN

» worst possible starting point

» need to recover centrality before attaining optimality
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Warm-start issues with IPMs

Contradictory requirements:
» Point should be close to the solution

» Point should be away from the boundary

Current attempts:
» Store an “advanced” iterate (3—4 digits of accuracy)
» Take special care of centrality
» Restore primal and dual feasibility with independent directions

» Allow the iterates to become negative (with penalties)
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Assumptions and setup

Main assumptions:
» No knowledge on the underlying stochastic processes

» An event tree is given

Problem setup:
» Required to solve an instance with a specific tree
» Stochastic problems are given in SMPS format

» We generate and solve the deterministic equivalent
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Reduced event tree

Observation:

Very detailed event trees provide a fine-grained solution to a
problem that could have been solved more coarsely with a much
smaller tree.

Idea:
Use the solution to a smaller instance of the problem to generate a
warm-start point.
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Reduced tree generation

Two complementary strategies:
1. Span the breadth of the tree

» Choose some of the nodes at stage k (where k is small)

» Choose all their ancestors up to the root node
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Reduced tree generation

Two complementary strategies:
1. Span the breadth of the tree

» Choose some of the nodes at stage k (where k is small)

» Choose all their ancestors up to the root node

2. Choose the most representative scenario in each subtree
» Define a “scenario distance”

» Minimize the distance from an average scenario
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Scenario distance and representative scenarios

Distance between two nodes at period t:

i, ) = || T = T 4+ W = W] 4 | = B+ lg* = g
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Scenario distance and representative scenarios

Distance between two nodes at period t:

d(n', m) = || T = T + | W* = W + || = ] + g - |
Distance between two scenarios:

.
D(si,5) = Y d(n',nk), ix€si, je€ s
t=1
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Scenario distance and representative scenarios

Distance between two nodes at period t:

d(n', 1) = || T = T + W — Wi + || = ] + g - |
Distance between two scenarios:
T . .
D(si,s;) =Y _d(n*,n"), Q€5 ji€s
t=1

Representative scenario s* is the one that minimizes the weighted
distance from an average scenario s:

st =5, k=arg r_réig(l — pi)D(si, )
1
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Scenario reduction

Complete tree Reduced tree
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Main steps of the algorithm

Exploit the structure of the stochastic program:

1. Find a reduced event tree
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Main steps of the algorithm

Exploit the structure of the stochastic program:
1. Find a reduced event tree

2. Solve the reduced deterministic equivalent with loose accuracy
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2. Solve the reduced deterministic equivalent with loose accuracy

3. Generate a warm-start iterate for the complete problem
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Main steps of the algorithm

Exploit the structure of the stochastic program:

1. Find a reduced event tree

2. Solve the reduced deterministic equivalent with loose accuracy
3. Generate a warm-start iterate for the complete problem
4

. Solve the complete problem to optimality
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Main steps of the algorithm

Exploit the structure of the stochastic program:

1. Find a reduced event tree

2. Solve the reduced deterministic equivalent with loose accuracy
3. Generate a warm-start iterate for the complete problem
4

. Solve the complete problem to optimality

Features:
» The reduced problem is very easy to solve

» We exploit the structure to match the dimensions of the two
problems
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Construction of the warm-start iterate

Nodes in the reduced tree:
the solution is already available
~ Marco Colombo, Jacek Gondzio, Andreas Grothey

T

A warm-start approach for stochastic linear programs
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Construction of the warm-start iterate

Nodes in the reduced tree:
the solution is already available

Remaining nodes:
copy the solution from the
corresponding reduced-tree node

A warm-start approach for stochastic linear programs
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Numerical results |

Collection of standard SMPS problems solved with HOPDM:
» 2 scenarios in the reduced tree
» Reduced problem optimality tolerance: 5.0 x 107!

» Complete problem optimality tolerance: 5.0 x 1078
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Numerical results with HOPDM

Reduced event tree
Numerical results

Problem data Cold start Warm start

Name ‘ Stgs ‘ Scens || Iters Seconds || Iters Seconds
fxm2-16 2 16 22 1.2 13 1.0
fxm3-6 3 36 30 1.5 17 1.3
fxm3-16 3 256 40 31.1 20 20.7
fxm4-6 4 216 30 8.2 22 8.3
fxm4-16 4 | 4096 41 218.3 27 182.6
pltexpA3-16 3 256 26 153.8 14 87.8
pltexpA4-6 4 216 36 55.8 16 27.5
pltexpAb5-6 5| 1296 81 772.0 30 311.5
storm27 2 27 41 05.4 22 53.2
storm125 2 125 73 107.3 36 69.1
storm1000 2 | 1000 | 107  1498.3 45 831.5

Marco Colombo, Jacek Gondzio, Andreas Grothey A warm-start approach for stochastic linear programs
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Capacity assignment problem with uncertain demand

min Eq[f(x,d)] st. > cx <M, x>0,
leA

f(x,d) = min Z(dk - Z Zp)

keD pEPK

s.t. Z Z 7z, <x; Vlie A

keD pePy:lep

>z, < d Yk €D
PEPk

2, >0
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Numerical results Il

Problems formulated as SMPS and solved with OOPS:
» 2 scenarios in the reduced tree (serial) or 4 scenarios (parallel)
» Reduced problem optimality tolerance: 5.0 x 107!

» Complete problem optimality tolerance: 5.0 x 10~*
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Numerical results with OOPS (serial)

Problem data Cold start Warm start

Name ‘ Stgs ‘ Scens || Iters Seconds || lters Seconds
mnx-200 2 200 13 12.9 7 7.3
mnx-800 2 800 17 58.8 10 39.5
mnx-1600 2 | 1600 19 131.1 10 638.8
jlg-200 2 200 45 164.9 17 39.5
jlg-800 2 800 27 353.4 10 152.9
jlg-1600 2 | 1600 32 855.3 13 360.6
mgntA-100 2 100 28 260.0 14 156.2
mgntA-200 2 200 50 877.1 35 690.6
mgntA-400 2 400 40 14703 14 572.5
mgntB-100 2 100 23 511.1 14 318.0
mgntB-200 2 200 25 909.4 8 332.4
mgntB-400 2 400 29 21545 7 538.1

Marco Colombo, Jacek Gondzio, Andreas Grothey A warm-start approach for stochastic linear programs
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Numerical results with OOPS (parallel)

Problem data Cold start Warm start

Name ‘ Stgs ‘ Scens || Iters Seconds || lters Seconds
mnx-200 2 200 13 4.6 7 3.5
mnx-800 2 800 17 18.8 10 10.7
mnx-1600 2 | 1600 19 50.3 10 31.4
jlg-200 2 200 45 49.9 17 20.7
jlg-800 2 800 29 130.5 10 50.1
jlg-1600 2 | 1600 35 286.1 14 129.7
mgntA-100 2 100 28 76.9 14 51.6
mgntA-200 2 200 50 256.4 34 195.3
mgntA-400 2 400 40 410.9 14 181.6
mgntB-100 2 100 23 137.5 14 103.9
mgntB-200 2 200 25 284.2 8 140.5
mgntB-400 2 400 29 605.5 7 211.6

Marco Colombo, Jacek Gondzio, Andreas Grothey A warm-start approach for stochastic linear programs
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Conclusions and future work

» Reduced tree solutions contain valuable information to
construct a good warm-start iterate for IPMs

» Savings in computational time for all but the smallest
instances

» Exploit the knowledge on the underlying stochastic process
if available

» Extend the approach to a multi-start procedure
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Conclusions and future work

» Reduced tree solutions contain valuable information to
construct a good warm-start iterate for IPMs

» Savings in computational time for all but the smallest
Instances

» Exploit the knowledge on the underlying stochastic process
if available

» Extend the approach to a multi-start procedure

Colombo, Gondzio, Grothey,

A warm-start approach for large-scale stochastic linear programs,
Technical Report MS-06-004, School of Mathematics, University of Edinburgh.
Available on optimization-online.org.
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