Stochastic programming Interior point methods A warm-start strategy for SLP

A warm-start approach for large-scale stochastic linear programs

Marco Colombo Jacek Gondzio Andreas Grothey

School of Mathematics University of Edinburgh

SPXI, Vienna

Stochastic programming Interior point methods A warm-start strategy for SLP

Stochastic programming

Concepts and notation Structure in the problem

Interior point methods

Derivation and basic ideas Warm-start strategies

A warm-start strategy for stochastic linear programming Reduced event tree Numerical results

Introduction

Stochastic programming

- Model uncertainty through the analysis of possible future scenarios
- Alternating sequence of decisions and random realisations
- Robust decision making
- And much more!

Stochastic programming Interior point methods A warm-start strategy for SLP

Concepts and notation Structure in the problem

Event tree

To each node of the tree we associate:

- a set of constraints
- an objective function
- the conditional probability of visit from the parent node

Notation

t stage l_t index of a node of stage t $a(l_t)$ ancestor of node l_t n^{l_t} node data: { $T^{l_t}, W^{l_t}, h^{l_t}, q^{l_t}, p^{l_t}$ }

Model of the dynamics of the system (at node I_t):

$$\begin{array}{ll} \min & \sum_{l_t} p^{l_t} (q^{l_t})^T x^{l_t} \\ \text{s.t.} & T^{l_t} x^{a(l_t)} + W^{l_t} x^{l_t} = h^{l_t} \\ & x^{l_t} \geq 0 \end{array}$$

Complete deterministic equivalent formulation

$$\begin{array}{rll} \min & (q^{l_1})^T x^{l_1} + \sum_{l_2=L_1+1}^{L_2} p^{l_2} (q^{l_2})^T x^{l_2} + \ldots + \sum_{l_T=L_{T-1}+1}^{L_T} p^{l_T} (q^{l_T})^T x^{l_T} \\ \text{s.t.} & W^{l_1} x^{l_1} = h^{l_1} \\ & T^{l_2} x^1 + W^{l_2} x^{l_2} = h^{l_2} & l_2 = L_1 + 1, \ldots, L_2, \\ & \vdots & \vdots \\ & T^{l_T} x^{a(l_T)} + W^{l_T} x^{l_T} = h^{l_T} & l_T = L_{T-1} + 1, \ldots, L_T, \\ & x^{l_t} \ge 0 & l_t = 1, \ldots, L_T. \end{array}$$

Stochastic programming Interior point methods A warm-start strategy for SLP

Concepts and notation Structure in the problem

Structure of the deterministic equivalent

Breadth-first ordering

Depth-first ordering

Marco Colombo, Jacek Gondzio, Andreas Grothey

A warm-start approach for stochastic linear programs

The curse of dimensions

The deterministic equivalent formulation produces problems of extremely large size, even when starting from a small core.

Example: fxm	rows	cols	nonzeros
Deterministic model:	330	457	2,566
3 stages, 6 nodes:	6,200	9,492	54,589
4 stages, 16 nodes:	386,940	517,282	4,518,039

- A detailed description produces robust decisions
- Detailed event trees can be very large
- The dimensions involved explode

However, remember the presence of structure!

The way forward

Enter interior point methods:

- IPM solvers are available in the community (CPLEX Barrier, PCx, HOPDM, etc.)
- Competitiveness of IPMs grows with the problem size
- Parallel implementations are possible

And we can exploit the structure:

- Linear algebra: structure-exploiting parallel software OOPS
- Algorithmically: warm-start for stochastic problems in IPMs

OOPS - Object Oriented Parallel (Interior Point) Solver

OOPS is a parallel IPM LP/QP solver (with NLP extensions) that can exploit the structure in the linear algebra.

Key advantages of exploiting the structure in the problem:

- Faster linear algebra
- Reduced memory use (by use of implicit factorization)
- Possibility to exploit (massive) parallelism
- Assumption that the structure is known

Talk by Andreas Grothey in session FA2.

Linear programming and optimality conditions

Karush-Kuhn-Tucker (KKT) conditions for optimality for an LP:

$$\begin{array}{rcl} Ax - b &=& 0\\ A^{T}y + s - c &=& 0\\ \forall i: x_{i}s_{i} &=& 0\\ x, s &\geq& 0 \end{array} \Rightarrow \begin{bmatrix} Ax - b\\ A^{T}y + s - c\\ XSe \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$$

Linear programming and optimality conditions

Karush-Kuhn-Tucker (KKT) conditions for optimality for an LP:

$$\begin{array}{rcl} Ax - b &=& 0\\ A^{T}y + s - c &=& 0\\ \forall i : x_{i}s_{i} &=& \mu\\ x, s &\geq& 0 \end{array} \Rightarrow \begin{bmatrix} Ax - b\\ A^{T}y + s - c\\ XSe \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ \mu e \end{bmatrix}$$

IPMs perturb the complementarity conditions and solve a sequence of problems parametrised by μ .

As $\mu \rightarrow 0$ the solution traces a continuous path from the starting point to the optimal solution (central path).

Centrality

IPMs follow the central path to find the optimal solution.

Polynomial complexity:

in theory: $\mathcal{O}(\sqrt{n})$ or $\mathcal{O}(n)$ iterations in practice: $\mathcal{O}(\ln n)$ iterations

Good behaviour and bad behaviour

Good:

- central starting point
- remain in the neighbourhood of the central path in all iterations

Good behaviour and bad behaviour

Good:

- central starting point
- remain in the neighbourhood of the central path in all iterations

Bad:

- iterate close to the boundary
- many iterations spent in retrieving centrality before converging

Warm-start strategies

A warm-start strategy uses the solution to a problem instance to initialise the next problem.

- Important if we are solving a sequence of problems
- The solution to one problem is close to the solution of the next
- Reduced computational time from an advanced starting point

Common understanding:

- Warm-start is good with the simplex method
- Warm-start is bad with IPMs (?)

Warm-start with the simplex method

The solution of a problem is a vertex:

ideal starting point for the modified instance

Warm-start with the simplex method

The solution of a problem is a vertex:

- ideal starting point for the modified instance
- optimality recovered in a few (very cheap) iterations

Warm-start with interior point methods

The solution of a problem is arbitrarily close to a vertex:

worst possible starting point

Warm-start with interior point methods

The solution of a problem is arbitrarily close to a vertex:

- worst possible starting point
- need to recover centrality before attaining optimality

Warm-start issues with IPMs

Contradictory requirements:

- Point should be close to the solution
- Point should be away from the boundary

Current attempts:

- Store an "advanced" iterate (3–4 digits of accuracy)
- Take special care of centrality
- Restore primal and dual feasibility with independent directions
- Allow the iterates to become negative (with penalties)

Assumptions and setup

Main assumptions:

- No knowledge on the underlying stochastic processes
- An event tree is given

Problem setup:

- Required to solve an instance with a specific tree
- Stochastic problems are given in SMPS format
- We generate and solve the deterministic equivalent

Reduced event tree

Observation:

Very detailed event trees provide a fine-grained solution to a problem that could have been solved more coarsely with a much smaller tree.

Idea:

Use the solution to a smaller instance of the problem to generate a warm-start point.

Reduced tree generation

Two complementary strategies:

- 1. Span the breadth of the tree
 - Choose some of the nodes at stage k (where k is small)
 - Choose all their ancestors up to the root node

Reduced tree generation

Two complementary strategies:

- 1. Span the breadth of the tree
 - Choose some of the nodes at stage k (where k is small)
 - Choose all their ancestors up to the root node
- 2. Choose the most representative scenario in each subtree
 - Define a "scenario distance"
 - Minimize the distance from an average scenario

Scenario distance and representative scenarios

Distance between two nodes at period *t*:

$$d(n^{i_t}, n^{j_t}) = \|T^{i_t} - T^{j_t}\| + \|W^{i_t} - W^{j_t}\| + \|h^{i_t} - h^{j_t}\| + \|q^{i_t} - q^{j_t}\|$$

Scenario distance and representative scenarios

Distance between two nodes at period *t*:

$$d(n^{i_t}, n^{j_t}) = \|T^{i_t} - T^{j_t}\| + \|W^{i_t} - W^{j_t}\| + \|h^{i_t} - h^{j_t}\| + \|q^{i_t} - q^{j_t}\|$$

Distance between two scenarios:

$$D(s_i, s_j) = \sum_{t=1}^T d(n^{i_t}, n^{j_t}), \quad i_t \in s_i, \ j_t \in s_j$$

Scenario distance and representative scenarios

Distance between two nodes at period *t*:

$$d(n^{i_t}, n^{j_t}) = \|T^{i_t} - T^{j_t}\| + \|W^{i_t} - W^{j_t}\| + \|h^{i_t} - h^{j_t}\| + \|q^{i_t} - q^{j_t}\|$$

Distance between two scenarios:

$$D(s_i, s_j) = \sum_{t=1}^T d(n^{i_t}, n^{j_t}), \quad i_t \in s_i, \ j_t \in s_j$$

Representative scenario s^* is the one that minimizes the weighted distance from an average scenario \bar{s} :

$$s^* = s_k, \quad k = \arg\min_{i \in S} (1 - p_i) D(s_i, \overline{s})$$

Reduced event tree Numerical results

Scenario reduction

Reduced tree

Marco Colombo, Jacek Gondzio, Andreas Grothey A warm-start approach for stochastic linear programs

Exploit the structure of the stochastic program:

1. Find a reduced event tree

Exploit the structure of the stochastic program:

- 1. Find a reduced event tree
- 2. Solve the reduced deterministic equivalent with loose accuracy

Exploit the structure of the stochastic program:

- 1. Find a reduced event tree
- 2. Solve the reduced deterministic equivalent with loose accuracy
- 3. Generate a warm-start iterate for the complete problem

Exploit the structure of the stochastic program:

- 1. Find a reduced event tree
- 2. Solve the reduced deterministic equivalent with loose accuracy
- 3. Generate a warm-start iterate for the complete problem
- 4. Solve the complete problem to optimality

Exploit the structure of the stochastic program:

- 1. Find a reduced event tree
- 2. Solve the reduced deterministic equivalent with loose accuracy
- 3. Generate a warm-start iterate for the complete problem
- 4. Solve the complete problem to optimality

Features:

- The reduced problem is very easy to solve
- We exploit the structure to match the dimensions of the two problems

Stochastic programming Interior point methods A warm-start strategy for SLP

Reduced event tree Numerical results

Construction of the warm-start iterate

Nodes in the reduced tree: the solution is already available

Stochastic programming Interior point methods A warm-start strategy for SLP

Construction of the warm-start iterate

Nodes in the reduced tree: the solution is already available

Remaining nodes: copy the solution from the corresponding reduced-tree node

Numerical results I

Collection of standard SMPS problems solved with HOPDM:

- 2 scenarios in the reduced tree
- Reduced problem optimality tolerance: 5.0×10^{-1}
- Complete problem optimality tolerance: 5.0×10^{-8}

Numerical results with HOPDM

Problem data		Cold start		Warm start		
Name	Stgs	Scens	Iters	Seconds	Iters	Seconds
fxm2-16	2	16	22	1.2	13	1.0
fxm3-6	3	36	30	1.5	17	1.3
fxm3-16	3	256	40	31.1	20	20.7
fxm4-6	4	216	30	8.2	22	8.3
fxm4-16	4	4096	41	218.3	27	182.6
pltexpA3-16	3	256	26	153.8	14	87.8
pltexpA4-6	4	216	36	55.8	16	27.5
pltexpA5-6	5	1296	81	772.0	30	311.5
storm27	2	27	41	95.4	22	53.2
storm125	2	125	73	107.3	36	69.1
storm1000	2	1000	107	1498.3	45	831.5

t

Capacity assignment problem with uncertain demand

$$\min_{x} E_d[f(x,d)] \quad \text{s.t.} \quad \sum_{l \in \mathcal{A}} c_l x_l \leq M, \ x \geq 0,$$

$$F(x, d) = \min \sum_{\substack{k \in \mathcal{D} \\ p \in \mathcal{P}_k \\ \sum_{\substack{k \in \mathcal{D} \\ p \in \mathcal{P}_k \\ z_p \leq d_k \\ z_p \geq 0}} \sum_{\substack{p \in \mathcal{P}_k \\ p \in \mathcal{P}_k \\ \forall k \in \mathcal{D} \\ \forall k \in \mathcal{D} \\ \forall k \in \mathcal{D} \\ z_p \geq 0 \\ }$$

Numerical results II

Problems formulated as SMPS and solved with OOPS:

- 2 scenarios in the reduced tree (serial) or 4 scenarios (parallel)
- Reduced problem optimality tolerance: 5.0×10^{-1}
- Complete problem optimality tolerance: 5.0×10^{-4}

Numerical results with OOPS (serial)

Problem data		Cold start		Warm start		
Name	Stgs	Scens	Iters	Seconds	Iters	Seconds
mnx-200	2	200	13	12.9	7	7.3
mnx-800	2	800	17	58.8	10	39.5
mnx-1600	2	1600	19	131.1	10	68.8
jlg-200	2	200	45	164.9	17	39.5
jlg-800	2	800	27	353.4	10	152.9
jlg-1600	2	1600	32	855.3	13	360.6
mgntA-100	2	100	28	260.0	14	156.2
mgntA-200	2	200	50	877.1	35	690.6
mgntA-400	2	400	40	1470.3	14	572.5
mgntB-100	2	100	23	511.1	14	318.0
mgntB-200	2	200	25	909.4	8	332.4
mgntB-400	2	400	29	2154.5	7	538.1

Marco Colombo, Jacek Gondzio, Andreas Grothey

A warm-start approach for stochastic linear programs

Numerical results with OOPS (parallel)

Problem data		Cold start		Warm start		
Name	Stgs	Scens	Iters	Seconds	Iters	Seconds
mnx-200	2	200	13	4.6	7	3.5
mnx-800	2	800	17	18.8	10	10.7
mnx-1600	2	1600	19	50.3	10	31.4
jlg-200	2	200	45	49.9	17	20.7
jlg-800	2	800	29	130.5	10	50.1
jlg-1600	2	1600	35	286.1	14	129.7
mgntA-100	2	100	28	76.9	14	51.6
mgntA-200	2	200	50	256.4	34	195.3
mgntA-400	2	400	40	410.9	14	181.6
mgntB-100	2	100	23	137.5	14	103.9
mgntB-200	2	200	25	284.2	8	140.5
mgntB-400	2	400	29	605.5	7	211.6

Marco Colombo, Jacek Gondzio, Andreas Grothey

A warm-start approach for stochastic linear programs

Conclusions and future work

- Reduced tree solutions contain valuable information to construct a good warm-start iterate for IPMs
- Savings in computational time for all but the smallest instances
- Exploit the knowledge on the underlying stochastic process if available
- Extend the approach to a multi-start procedure

Conclusions and future work

- Reduced tree solutions contain valuable information to construct a good warm-start iterate for IPMs
- Savings in computational time for all but the smallest instances
- Exploit the knowledge on the underlying stochastic process if available
- Extend the approach to a multi-start procedure

Colombo, Gondzio, Grothey,

A warm-start approach for large-scale stochastic linear programs, Technical Report MS-06-004, School of Mathematics, University of Edinburgh. Available on optimization-online.org.