A warm-start approach for large-scale stochastic linear programs

Marco Colombo Jacek Gondzio Andreas Grothey

School of Mathematics The University of Edinburgh

Spring School on Stochastic Programming Bergamo, 17 April 2007

Stochastic programming

Concepts and notation SMPS format Structure

Interior point methods

Derivation and basic ideas Warm-start strategies

A warm-start strategy for stochastic linear programming

Reduced event tree Numerical results

What is stochastic programming

- Model uncertainty through the analysis of possible future scenarios
- Alternating sequence of decisions and random realisations
- Robust decision making
- And much more!

Concepts and notation SMPS format Structure

Event tree

To each node of the tree we associate:

- a set of constraints
- an objective function
- the conditional probability of visit from the parent node

Notation

t stage l_t index of a node of stage t $a(l_t)$ ancestor of node l_t n^{l_t} node data: { $T^{l_t}, W^{l_t}, h^{l_t}, q^{l_t}, p^{l_t}$ }

Model of the dynamics of the system (at node I_t):

$$\begin{array}{ll} \min & \sum_{l_t} p^{l_t} (q^{l_t})^T x^{l_t} \\ \text{s.t.} & T^{l_t} x^{a(l_t)} + W^{l_t} x^{l_t} = h^{l_t} \\ & x^{l_t} \geq 0 \end{array}$$

Concepts and notation SMPS format Structure

Complete deterministic equivalent formulation

$$\begin{array}{rll} \min & (q^{l_1})^T x^{l_1} & + \sum_{l_2=L_1+1}^{L_2} p^{l_2} (q^{l_2})^T x^{l_2} & + \ldots + \sum_{l_T=L_{T-1}+1}^{L_T} p^{l_T} (q^{l_T})^T x^{l_T} \\ \text{s.t.} & W^{l_1} x^{l_1} & = h^{l_1}, \\ & T^{l_2} x^1 & + & W^{l_2} x^{l_2} & = h^{l_2}, \\ & \vdots & \vdots \\ & T^{l_T} x^{a(l_T)} & + & W^{l_T} x^{l_T} = h^{l_T}, \\ & & x^{l_t} & \geq 0, \\ \end{array} \begin{array}{l} I_T & = L_{T-1} + 1, \ldots, L_T, \\ & & t_1 = 1, \ldots, L_T. \end{array}$$

The SMPS format

Standard formulation of multistage stochastic programs.

A problem in SMPS format is defined through 3 text files: Core file: underlying deterministic problem in MPS format; Time file: information about the breaking up in stages; Stoch file: list of variations to the core data for each scenario.

Provides all information about the structure of the problem.

Concepts and notation SMPS format Structure

The SMPS files

Core

Concepts and notation SMPS format Structure

The SMPS files

$\mathsf{Core} + \mathsf{Time}$

Concepts and notation SMPS format Structure

The SMPS files

$\mathsf{Core} + \mathsf{Time} + \mathsf{Stoch}$

Marco Colombo, Jacek Gondzio, Andreas Grothey A warm-start approach for stochastic linear programs

Concepts and notation SMPS format Structure

Structure of the deterministic equivalent

Breadth-first ordering

Depth-first ordering

Marco Colombo, Jacek Gondzio, Andreas Grothey

A warm-start approach for stochastic linear programs

Concepts and notation SMPS format Structure

Structure of the deterministic equivalent

Marco Colombo, Jacek Gondzio, Andreas Grothey A warm-start approach for stochastic linear programs

Issues with the deterministic equivalent approach

The deterministic equivalent formulation produces problems of extremely large size, even when starting from a small core.

Example: fxm	rows	cols	nonzeros
Core matrix	330	457	2,566
3 stages, 6 nodes:	6,200	9,492	54,589
4 stages, 16 nodes:	386,940	517,282	4,518,039

- A detailed description produces robust decisions
- Detailed event trees can be very large
- The dimensions involved explode

The way forward

Enter interior point methods:

- IPM solvers are available in the community (CPLEX Barrier, PCx, HOPDM, etc.)
- Competitiveness of IPMs grows with the problem size
- Parallel implementations are possible

The way forward

Enter interior point methods:

- IPM solvers are available in the community (CPLEX Barrier, PCx, HOPDM, etc.)
- Competitiveness of IPMs grows with the problem size
- Parallel implementations are possible

And:

- Structure-exploiting (parallel) software (OOPS)
- Exploiting the stochastic structure to warm-start the IPMs

Linear programming and optimality conditions

Linear programming problem

$$\begin{array}{lll} \min & c^T x & \max & b^T y \\ \text{s.t.} & Ax = b & \text{s.t.} & A^T y + s = c \\ & x \ge 0 & s \ge 0 \end{array}$$

Karush-Kuhn-Tucker (KKT) conditions for optimality

$$\begin{array}{c} Ax - b = 0 \\ A^{T}y + s - c = 0 \\ \forall i : x_{i}s_{i} = 0 \\ x, s \ge 0 \end{array} \qquad F(x, y, s) = \left[\begin{array}{c} Ax - b \\ A^{T}y + s - c \\ XSe \\ x, s \ge 0 \end{array}\right] = 0$$

Derivation of path-following methods

Perturb the complementarity conditions:

 $XSe = \mu e$

IPMs solve a sequence of problems parametrised by μ .

Let $\mu \rightarrow 0$:

- The perturbed conditions better approximate the original KKT conditions
- The solution traces a continuous path from the starting point to the optimal solution (central path)

Primal-dual interior point methods

Basic structure of an IPM iteration

- Given an iterate (x, y, s) for which (x, s) > 0
- Solve the perturbed KKT conditions with Newton's method

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^{T} & I \\ S & 0 & X \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta s \end{bmatrix} = \begin{bmatrix} b - Ax \\ c - A^{T}y - s \\ -XSe + \mu e \end{bmatrix}$$

• Move to the next point with stepsize α such that

$$(x + \alpha \Delta x, s + \alpha \Delta s) > 0$$

Here A is the whole deterministic equivalent

Centrality

IPMs follow the central path to find the optimal solution. The iterates lie in some neighbourhood of the central path.

Polynomial complexity:

in theory: $\mathcal{O}(\sqrt{n})$ or $\mathcal{O}(n)$ iterations in practice: $\mathcal{O}(\ln n)$ iterations

Good behaviour and bad behaviour

Good:

- central starting point
- remain in the neighbourhood of the central path in all iterations

Good behaviour and bad behaviour

Good:

- central starting point
- remain in the neighbourhood of the central path in all iterations

Bad:

- iterate close to the boundary
- many iterations spent in retrieving centrality before converging

Warm-start strategies

A warm-start strategy uses the solution to a problem instance to initialise the next problem.

- Important if we are solving a sequence of problems
- Often we may expect that the solution to one problem is close to the solution of the next
- An advanced starting point may lead to reduced computational time than solving the problem from scratch

Warm-start with the simplex method

The solution of a problem is a vertex:

Warm-start with the simplex method

The solution of a problem is a vertex:

- ideal starting point for the modified instance
- optimality recovered in a few iterations (if there are not too many changes in the problems)

Warm-start with interior point methods

The solution of a problem is arbitrarily close to a vertex:

Warm-start with interior point methods

The solution of a problem is arbitrarily close to a vertex:

worst possible starting point

Warm-start with interior point methods

The solution of a problem is arbitrarily close to a vertex:

- worst possible starting point
- some iterations to recover centrality in the new central path
- some iterations for optimality

Warm-start issues with IPMs

Contradictory requirements:

- Point should be close to the solution
- Point should be away from the boundary

Warm-start issues with IPMs

Contradictory requirements:

- Point should be close to the solution
- Point should be away from the boundary

Current attempts:

- Store an "advanced" iterate (3–4 digits of accuracy)
- Take special care of centrality
- Restore primal and dual feasibility with independent directions

Assumptions and setup

Main assumption:

- No knowledge on the underlying stochastic processes
- An event tree is given

Problem setup:

- Required to solve an instance with a specific tree
- Stochastic problems are given in the SMPS format
- We generate and solve the deterministic equivalent

Reduced event tree

Observation:

Very detailed event trees provide a fine-grained solution to a problem that could have been solved more coarsely with a much smaller tree.

Idea:

Use the solution to a smaller instance of the problem to generate a warm-start point.

Reduced tree generation

Two complementary strategies:

- 1. Span the breadth of the tree
 - Choose some of the nodes at stage k (where k is small)
 - Choose all their ancestors up to the root node

Reduced tree generation

Two complementary strategies:

- 1. Span the breadth of the tree
 - Choose some of the nodes at stage k (where k is small)
 - Choose all their ancestors up to the root node
- 2. Choose the most representative scenario in each subtree
 - Define a "scenario distance"
 - Minimize the distance from an average scenario

Scenario distance and representative scenarios

Distance between two nodes at period t:

$$d(n^{i_t}, n^{j_t}) = \|T^{i_t} - T^{j_t}\| + \|W^{i_t} - W^{j_t}\| + \|h^{i_t} - h^{j_t}\| + \|q^{i_t} - q^{j_t}\|$$

Scenario distance and representative scenarios Distance between two nodes at period *t*:

$$d(n^{i_t}, n^{j_t}) = \|T^{i_t} - T^{j_t}\| + \|W^{i_t} - W^{j_t}\| + \|h^{i_t} - h^{j_t}\| + \|q^{i_t} - q^{j_t}\|$$

Distance between two scenarios:

$$D(s_i, s_j) = \sum_{t=1}^T d(n^{i_t}, n^{j_t}), \quad i_t \in s_i, \ j_t \in s_j$$

Scenario distance and representative scenarios Distance between two nodes at period *t*:

$$d(n^{i_t}, n^{j_t}) = \|T^{i_t} - T^{j_t}\| + \|W^{i_t} - W^{j_t}\| + \|h^{i_t} - h^{j_t}\| + \|q^{i_t} - q^{j_t}\|$$

Distance between two scenarios:

$$D(s_i, s_j) = \sum_{t=1}^T d(n^{i_t}, n^{j_t}), \quad i_t \in s_i, \ j_t \in s_j$$

In each subtree of the given tree, the representative scenario s^* is the one that minimizes the weighted distance from an average scenario \bar{s}

$$s^* = s_k, \quad k = \arg\min_{i \in S} (1 - p_i) D(s_i, \overline{s})$$

Reduced event tree Numerical results

Scenario reduction

Reduced tree

Marco Colombo, Jacek Gondzio, Andreas Grothey A warm-start approach for stochastic linear programs

Exploit the structure of the stochastic program

1. Find a reduced event tree

Exploit the structure of the stochastic program

- 1. Find a reduced event tree
- 2. Solve the reduced deterministic equivalent with loose accuracy

Exploit the structure of the stochastic program

- 1. Find a reduced event tree
- 2. Solve the reduced deterministic equivalent with loose accuracy
- 3. Use this advanced point to generate a warm-start iterate for the complete problem

Exploit the structure of the stochastic program

- 1. Find a reduced event tree
- 2. Solve the reduced deterministic equivalent with loose accuracy
- 3. Use this advanced point to generate a warm-start iterate for the complete problem
- 4. Solve the complete problem to optimality

Exploit the structure of the stochastic program

- 1. Find a reduced event tree
- 2. Solve the reduced deterministic equivalent with loose accuracy
- 3. Use this advanced point to generate a warm-start iterate for the complete problem
- 4. Solve the complete problem to optimality

Good news: The reduced problem is very easy to solve!

Exploit the structure of the stochastic program

- 1. Find a reduced event tree
- 2. Solve the reduced deterministic equivalent with loose accuracy
- 3. Use this advanced point to generate a warm-start iterate for the complete problem
- 4. Solve the complete problem to optimality

Good news: The reduced problem is very easy to solve! Bad news: The dimensions of the two problems don't match...

Exploit the structure of the stochastic program

- 1. Find a reduced event tree
- 2. Solve the reduced deterministic equivalent with loose accuracy
- 3. Use this advanced point to generate a warm-start iterate for the complete problem
- 4. Solve the complete problem to optimality

Good news: The reduced problem is very easy to solve! Bad news: The dimensions of the two problems don't match... Good news: We can exploit the structure again!

Reduced event tree Numerical results

Construction of the warm-start iterate

Marco Colombo, Jacek Gondzio, Andreas Grothey A warm-start approach for stochastic linear programs

A warm-start strategy for SLP

Reduced event tree

Construction of the warm-start iterate

Nodes in the reduced tree: the solution is already available

Construction of the warm-start iterate

Nodes in the reduced tree: the solution is already available

Remaining nodes: copy the solution from the corresponding reduced-tree node

Numerical results I

Collection of standard SMPS problems solved with HOPDM:

- 2 scenarios in the reduced tree
- Reduced problem optimality tolerance: 5.0×10^{-1}
- Complete problem optimality tolerance: 5.0×10^{-8}

Numerical results with HOPDM

Problem data		Cold start		Warm start		
Name	Stgs	Scens	Iters	Seconds	Iters	Seconds
fxm2-16	2	16	22	1.2	13	1.0
fxm3-6	3	36	30	1.5	17	1.3
fxm3-16	3	256	40	31.1	20	20.7
fxm4-6	4	216	30	8.2	22	8.3
fxm4-16	4	4096	41	218.3	27	182.6
pltexpA3-16	3	256	26	153.8	14	87.8
pltexpA4-6	4	216	36	55.8	16	27.5
pltexpA5-6	5	1296	81	772.0	30	311.5
storm27	2	27	41	95.4	22	53.2
storm125	2	125	73	107.3	36	69.1
storm1000	2	1000	107	1498.3	45	831.5

t

Capacity assignment problem with uncertain demand

$$\min_{x} E_d[f(x,d)] \quad \text{s.t.} \quad \sum_{l \in \mathcal{A}} c_l x_l \leq M, \ x \geq 0,$$

$$f(x, d) = \min \sum_{\substack{k \in \mathcal{D} \\ p \in \mathcal{P}_k \\ \sum_{\substack{k \in \mathcal{D} \\ p \in \mathcal{P}_k \\ z_p \leq d_k \\ z_p \geq 0}} \sum_{\substack{p \in \mathcal{P}_k \\ p \in \mathcal{P}_k \\ \forall k \in \mathcal{D} \\ \forall k \in \mathcal{D} \\ \forall k \in \mathcal{D} \\ z_p \geq 0 \\ \end{pmatrix}$$

Numerical results II

Problems formulated as SMPS and solved with OOPS:

- 2 scenarios in the reduced tree (serial) or 4 scenarios (parallel)
- Reduced problem optimality tolerance: 5.0×10^{-1}
- Complete problem optimality tolerance: 5.0×10^{-4}

Numerical results with OOPS (serial)

Problem data		Cold start		Warm start		
Name	Stgs	Scens	Iters	Seconds	Iters	Seconds
mnx-200	2	200	13	12.9	7	7.3
mnx-800	2	800	17	58.8	10	39.5
mnx-1600	2	1600	19	131.1	10	68.8
jlg-200	2	200	45	164.9	17	39.5
jlg-800	2	800	27	353.4	10	152.9
jlg-1600	2	1600	32	855.3	13	360.6
mgntA-100	2	100	28	260.0	14	156.2
mgntA-200	2	200	50	877.1	35	690.6
mgntA-400	2	400	40	1470.3	14	572.5
mgntB-100	2	100	23	511.1	14	318.0
mgntB-200	2	200	25	909.4	8	332.4
mgntB-400	2	400	29	2154.5	7	538.1

Marco Colombo, Jacek Gondzio, Andreas Grothey

A warm-start approach for stochastic linear programs

Numerical results with OOPS (parallel)

Problem data		Cold start		Warm start		
Name	Stgs	Scens	Iters	Seconds	Iters	Seconds
mnx-200	2	200	13	4.6	7	3.5
mnx-800	2	800	17	18.8	10	10.7
mnx-1600	2	1600	19	50.3	10	31.4
jlg-200	2	200	45	49.9	17	20.7
jlg-800	2	800	29	130.5	10	50.1
jlg-1600	2	1600	35	286.1	14	129.7
mgntA-100	2	100	28	76.9	14	51.6
mgntA-200	2	200	50	256.4	34	195.3
mgntA-400	2	400	40	410.9	14	181.6
mgntB-100	2	100	23	137.5	14	103.9
mgntB-200	2	200	25	284.2	8	140.5
mgntB-400	2	400	29	605.5	7	211.6

Marco Colombo, Jacek Gondzio, Andreas Grothey

A warm-start approach for stochastic linear programs

Conclusions

- Reduced tree solutions contain valuable information to construct a good warm-start iterate
- In this case, interior point methods can be used successfully in warm-start situations
- Exploiting the structure gives once again an additional advantage