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Se’n foi me de chesta brögna ché?

If nothing else it true, well this is

If nothing else meant anything

The silence ended and I forgot. . .

I wish that I could find it, I wish I’d let it go

I wish my arms could hold it, will I ever know?

It may or may not happen. . .
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Abstract

This research studies two computational techniques that improve the practi-

cal performance of existing implementations of interior point methods for linear

programming. Both are based on the concept of symmetric neighbourhood as the

driving tool for the analysis of the good performance of some practical algorithms.

The symmetric neighbourhood adds explicit upper bounds on the complemen-

tarity pairs, besides the lower bound already present in the common N−∞ neigh-

bourhood. This allows the algorithm to keep under control the spread among

complementarity pairs and reduce it with the barrier parameter µ. We show that

a long-step feasible algorithm based on this neighbourhood is globally convergent

and converges in O(nL) iterations.

The use of the symmetric neighbourhood and the recent theoretical under-

standing of the behaviour of Mehrotra’s corrector direction motivate the intro-

duction of a weighting mechanism that can be applied to any corrector direction,

whether originating from Mehrotra’s predictor–corrector algorithm or as part of

the multiple centrality correctors technique. Such modification in the way a cor-

rection is applied aims to ensure that any computed search direction can positively

contribute to a successful iteration by increasing the overall stepsize, thus avoid-

ing the case that a corrector is rejected. The usefulness of the weighting strategy is

documented through complete numerical experiments on various sets of publicly

available test problems. The implementation within the hopdm interior point

code shows remarkable time savings for large-scale linear programming problems.

The second technique develops an efficient way of constructing a starting point

for structured large-scale stochastic linear programs. We generate a computation-

ally viable warm-start point by solving to low accuracy a stochastic problem of

much smaller dimension. The reduced problem is the deterministic equivalent

program corresponding to an event tree composed of a restricted number of sce-

narios. The solution to the reduced problem is then expanded to the size of the

problem instance, and used to initialise the interior point algorithm. We present

theoretical conditions that the warm-start iterate has to satisfy in order to be

successful. We implemented this technique in both the hopdm and the oops

frameworks, and its performance is verified through a series of tests on problem

instances coming from various stochastic programming sources.
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Chapter 1

Background and introduction.

In this chapter we present the background and scope of this research. In particular

we introduce the field of linear programming, discuss its relevance, and compare

some solution methods, specifically with regard to their computational complex-

ity. Further, we motivate our research and provide an outline of the chapters of

this thesis.

1.1 Linear programming

Linear programming is a relatively new discipline in the mathematical spectrum.

It was developed as mathematical models were being introduced for economic

and military planning in the years immediately following the end of World War

II. The realisation of its usefulness came simultaneously with the development of

a solution method, the simplex method. The introduction of the first computer

calculators was crucial to the blossoming and increase of this newly born area of

study. Historical accounts of the birth and development of linear programming

can be drawn from many sources, such as [21, Chapter 2] and [82]. Dantzig’s

personal recollections are also in [22].

A broad definition of linear programming has been given by Dantzig [22]:

“Linear programming can be viewed as part of the great revolutionary
development which has given mankind the ability to state general
goals and to lay out a path of detailed decisions to take in order to
“best” achieve its goals when faced with practical situations of great
complexity.”

Further, Dantzig [22] mentions the essential components of linear program-

ming:

“Our tools for doing this are ways to formulate real-world problems
in detailed mathematical terms (models), techniques for solving the
models (algorithms), and engines for executing the steps of algorithms
(computers and software).”
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An optimization problem can be described in terms of decision variables, a

set of constraints, and an objective function. The investigation of optimization

problems stems from the natural desire to solve a problem in the “best possible

way”. It is interesting to note that while the need for an objective function is

obvious now, it was not clear when the first problems were modelled: the set

of feasible solution used to be investigated with some ad-hoc criteria, instead of

being guided by the optimization of some quantity [22].

A linear programming problem is an optimization problem in which the ob-

jective function and constraints are linear. Linear programming problems arise

directly from real-life applications (for example in economics, finance, logistics,

and other areas), or as approximations to more complicated formulations, as most

real-life relationships are nonlinear. Another important source of linear programs

is the continuous relaxation of integer programming problems [82].

Among the class of convex optimization problems, linear programming has a

peculiar feature which is described by the following Theorem.

Theorem 1.1 (Fundamental theorem of linear programming). For a linear

programming problem with a feasible domain P containing at least one extreme

point, the optimal objective value is either unbounded or is achievable at one

extreme point of P.

The set of linear constraints defines a polyhedron that constitutes the feasible

region. According to Theorem 1.1, in looking for a solution we can restrict our

attention to the vertices of this polyhedron. The polyhedron corresponding to a

linear system of m constraints in n variables (m < n) has a number of vertices

equal to (
n

m

)
=

n!

m!(n − m)!
≥

( n

m

)m

. (1.1)

This number is an overestimate, as not all of these choices correspond to feasible

points.

The fact that the number of vertices is finite guarantees termination of any

algorithm that explores all vertices. However this number is exponential, as can

be clearly seen by further manipulating (1.1):
( n

m

)m

≥ 2m for n ≥ 2m.

This observation gives rise to the need of defining an algorithm that uses an

intelligent way to discover an optimal vertex among the multitude of non-optimal

ones.

An important feature of any algorithm is its efficiency, that is how much ef-

fort is needed for the algorithm to provide an answer for some given input. The
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concept of computational complexity was introduced in the 70s, as the greater

availability of computing machines required a deeper insight on the computa-

tional performance of different algorithms. The computational complexity of an

algorithm can be used as a measure of the growth in the computational effort as

a function of the size of the problem. Therefore, it provides a worst-case measure.

The formal notion of efficiency is that a problem has an algorithm running in

time proportional to a polynomial function of its input size. That is, we consider

an algorithm efficient if it runs in time O(nk) on any input of size n, for some

constant k > 0. An exhaustive presentation of this topic exceeds the aims of this

thesis. We refer the reader to available introductions in the area, [82, Chapter 2]

among others.

Complexity proofs rely on two assumptions that are necessary simplifications:

1. Computations are performed in exact arithmetic;

2. The numerical data of a problem instance is rational.

Computational complexity is measured by the number of elementary opera-

tions required to perform the algorithmic steps until termination. It often depends

on the size of the binary representation of the input, usually denoted by L.

Many algorithms have been proposed for solving a variety of optimization

problems. However, despite their diversity, they are based on the same general

framework which is summarised in the steps of Algorithm 1.1.

Algorithm 1.1 Generic optimization algorithm

Given: An initial iterate w;

Repeat:
Determine a search direction ∆w.

Compute the distance α of how far to move along the search direction.

Move to the next point w + α∆w.

Until Some termination criteria are met.

Each element of this generic framework (starting point, search direction, step-

size, termination criteria) has to be accurately specified in order to define a par-

ticular algorithm. In what follows, we will introduce the main ideas behind three

different solution methods for linear programming: the simplex method, the el-

lipsoid method, and the class of interior point methods.

1.1.1 The simplex method

The simplex method was introduced in 1947 by George Dantzig [21]. The intro-

duction of the simplex method happened simultaneously with the realisation of
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linear programming as an efficient modelling tool for practical decision making.

The simplex method exploits the insight provided by the fundamental theorem

of linear programming (1.1), which states that the optimal solution, if it exists,

is at one of the vertices of the feasible polytope. Thus it reaches a solution by

visiting a sequence of vertices of the polyhedron, moving from each subsequent

vertex to an adjacent one characterised by a better objective function value (in

the non-degenerate case). Since the number of vertices is finite, termination is

guaranteed.

Moreover, given the monotonic method of choosing the next vertex, the set

of possible vertices decreases after each iteration, in the non-degenerate case.

Degeneracy occurs when a vertex in R
m is defined by p > m constraints, and a

step of length zero may be produced. In such a case, the simplex method does

not actually move away from the current vertex, and thus no improvement in the

objective function value can be achieved.

In terms of practical efficiency, the simplex algorithm has long been considered

the undisputed method for solving linear programming problems. However, the

simplex method has exponential complexity. It is possible that all the vertices of

the feasible polyhedron have to be visited before an optimal solution is reached.

Klee and Minty [53] were the first to provide an example of pathological behaviour

of the simplex method. In their example, a linear program with n variables and

2n inequalities, the simplex method visits each of the 2n vertices.

However, no cases of exponential number of iterations have been encountered

in real-life problems, and usually only a fraction of the vertices are actually tra-

versed before the optimal one is found. Moreover, in most cases the simplex algo-

rithm shows polynomial behaviour, being linear in m and sublinear in n [28, p.94].

A survey on the efficiency of the simplex method is done by Shamir [83], where a

probabilistic analysis (as opposed to worst-case analysis) is also presented.

The gap between the observed and theoretical worst-case performances of the

simplex method is still unexplained. Given this theoretical drawback, a great deal

of effort has been put into finding an algorithm for linear programming which is

characterised by a polynomial-time bound.

1.1.2 The ellipsoid method

In 1979 a breakthrough occurred, as Khachiyan showed how to adapt the ellipsoid

method for convex programming to the linear programming case, and determined

the computational complexity of linear programming.

In Khachiyan’s ellipsoid method, the feasible polyhedron is inscribed in a

sequence of ellipsoids of decreasing size. The first ellipsoid has to be large enough
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to include a feasible solution to the constraints; the volume of the successive

ellipsoids shrinks geometrically. Therefore it generates improving iterates in the

sense that the region in which the solution lies is reduced at each iteration in

a monotonic fashion. The algorithm either finds a solution, as the centres of

the ellipsoids converge to the optimal point, or states that no solution exists.

More details on the ellipsoid method can be found in [82, Chapter 13] and [74,

Chapter I.6], for example.

The exciting property of the ellipsoid method is that it finds a solution in

O(n2L) iterations, and thus has polynomial complexity. However, since the el-

lipsoid algorithm generally attains this worst-case bound [30], its practical per-

formance is not competitive with other solution methods. Besides, it displays

other drawbacks related to large round-off errors and a need for dense matrix

computation. Nevertheless, the ellipsoid method is often used in the context of

combinatorial optimization as an analytic tool to prove complexity results for

algorithms [74].

1.1.3 Interior point methods

Interior point methods were being developed in the 60s and the beginning of

the 70s as methods to solve nonlinear programming problems with inequality

constraints. However, they fell from favour and received less and less attention

because of their inefficiency and the presence of strong competitors such as se-

quential quadratic programming [89].

Since their reintroduction, this time to solve linear programs, following Kar-

markar’s groundbreaking paper [52], interior point methods have attracted the

interest of a growing number of researchers. This algorithm was also proved to

have polynomial complexity: indeed, it converges in O(nL) iterations. As opposed

to Khachiyan’s ellipsoid method, in practice Karmarkar’s algorithm actually per-

forms much better than its worst-case bound states.

The main idea behind interior point methods is fundamentally different to the

one that inspires the simplex algorithm. Here, the optimal vertex is approached

by moving through the interior of the feasible region. This is done by creating a

family of parametrised approximate solutions that asymptotically converge to the

exact solution. Therefore, by embedding the linear problem in a nonlinear context,

an interior point method escapes the “curse of dimensionality” characteristic of

dealing with the combinatorial features of the linear programming problem. For

details on Karmarkar’s algorithm, we refer to [28, Chapter 6].

Karmarkar [52] explained the advantage of an interior point approach as fol-

lows:
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“In the simplex method, the current solution is modified by introducing
a nonzero coefficient for one of the columns in the constraint matrix.
Our method allows the current solution to be modified by introducing
several columns at once.”

Karmarkar announced that his method was extremely successful in practice,

claiming to beat the simplex method by a large margin (50 times, as reported in

[89]). A variant of Karmarkar’s original algorithm was then proposed and imple-

mented by Adler, Resende, Veiga and Karmarkar [1]. Since then, the theoretical

understanding has considerably improved, many algorithmic variants have been

proposed and several of them have shown to be computationally viable alterna-

tives to the simplex method.

Over the last 20 years, an impressive wealth of theoretical research has been

published, and computational developments have brought life to the field of linear

programming, which had not seemed to attract much attention anymore. Among

the positive consequences of the renewed interest in linear programming are the

improvements to the implementations of simplex-based solvers [11, 12].

There are classes of problems that are best solved with the simplex method,

and others for which an interior point method is preferred. Size, structure and

sparsity play a major role in the choice of algorithm for computations. As a rule

of thumb, with the increase of problem dimension, interior point methods become

more effective. However, this does not hold in the hyper-sparse case, where the

simplex method is virtually unbeatable [12, 43], and for network problems, where

the specialised network simplex method can exploit the structure in an extremely

efficient manner [74].

Interior point methods are well-suited to solving very large scale optimization

problems. Their theory is well understood [80, 90, 91] and the techniques used

in their implementation are documented in extensive literature (see, for example,

[3, 38, 61] and the references therein). They can be applied to a wide range of sit-

uations with no need of major changes. In particular, they have been successfully

applied to complementarity problems, quadratic programming, convex nonlinear

programming, second-order cone programming and semidefinite programming.

1.2 Motivation and scope of this research

Optimization algorithms are extremely important in real-life applications. The-

oretical advances are necessary for a deeper understanding of the the available

techniques and the opening of new avenues of research. However, theory per se

rarely has a direct impact on the lives of those who rely on optimization as a tool

8



to solve their problems. It is therefore necessary that the insight gathered from

theoretical studies is then transformed into effective practical tools. This usually

requires the implementation of computer programs with the aims of accuracy,

speed, and reliability.

The process of creating computationally efficient methods from theoretical

studies is not as direct as it might sound, but is somewhat an art in itself. It

often involves relaxing many of the theoretical assumptions, while ensuring other

properties and conditions. Therefore we will put great effort in accompanying

theoretical results with the corresponding computational considerations. While

in a few cases these can be treated simultaneously, generally that will not be

possible. There are a few reasons for this:

◦ Theoretical assumptions may not be realistic. This is the case when a con-

dition stated in a theorem is not realistically satisfiable in practice (for

example, bounds on some quantities).

◦ Theoretical requirements may be computationally expensive. This happens

when checking the satisfaction of a certain condition is not viable in practice.

◦ Theoretical assumptions may be too restrictive. This occurs when the theory

predicts the conditions under which a certain behaviour happens, but in

practice the same behaviour happens under more relaxed conditions.

◦ Theoretical analysis provides a worst-case result which may be very far from

the average one.

On the other hand, the practical implementation of an optimization algorithm

happens in a context that is not amenable to theoretical analysis for the following

reasons:

◦ Finite precision of floating-point arithmetic;

◦ Dependence on the numerical inputs;

◦ Heuristic algorithmic choices.

For these reasons, we will take a very pragmatic view of the field of optimiza-

tion. The approach that permeates this research and the presentation of its results

is markedly computationally oriented. We recognise the importance and validity

of theoretical developments, and we appreciate the insights that such results pro-

vide. Hence, we will discuss the theoretical foundations of interior point methods

for linear programming and contribute to it. However, as we are keen on improving
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existing computer implementations of interior point methods, our main drive will

be the development of implementable techniques for interior-point-based linear

programming solvers.

The contributions of this research are threefold.

First, we introduce and formalise the concept of symmetric neighbourhood as

the driving tool for the analysis and understanding of the good behaviour of some

practical algorithms. The practical success of an interior point code is negatively

affected by the presence of unbalanced complementary products. In this sense,

the quality of centrality (understood in a simplified way as complementarity) in

a practical algorithm is not conveniently characterised by either of the two neigh-

bourhoods N2 or N−∞ (see Section 2.1.2 for their definition) which are usually

employed in theoretical developments of interior point methods. The symmet-

ric neighbourhood Ns is a variation on the more common N−∞ neighbourhood in

which the complementarity pairs are bounded above and below by a quantity that

depends on the barrier parameter µ but does not depend directly on n. Within the

Ns neighbourhood, the spread among complementarity pairs is kept under control

and is reduced with the barrier parameter µ. This has beneficial consequences on

the quality of the search directions generated by Newton’s method. We show that

a long-step feasible algorithm based on the symmetric neighbourhood is globally

linearly convergent and has the same computational complexity as an algorithm

based on the wide N−∞ neighbourhood, as it converges in O(nL) iterations. Also,

the symmetric neighbourhood plays a central role in the development of the two

computational techniques that we introduce and study in this work.

The most significant use of the notion of symmetric neighbourhood is in the

weighted correctors technique, which is our second contribution. The weighting

mechanism, which is an adaptive technique to judge the most effective way of

including a corrector in the search direction, works particularly well in conjunc-

tion with multiple centrality correctors. The main objective of this research is to

analyse the efficiency of corrector directions in the light of the theoretical studies

of Cartis [14, 15]. It concentrates on ensuring that a corrector direction computed

at the current iterate is not rejected because it produces a short stepsize. Such

behaviour is usually manifested when the point is badly centered or highly in-

feasible. For this reason, ensuring that an appropriate (centrality) corrector is

accepted and produces an increase in the stepsize is crucial for moving the iterate

to a more favourable position. From the computational point of view, we have to

consider that a failed iteration comes with the high cost of having factorised the

matrix for no real improvement. We argue that following a quadratic trajectory

in generating a corrector direction is not always desirable. In particular, as the
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stepsizes in the primal and dual spaces are often much smaller than 1, trying

to correct for the whole linearisation error, as done in Mehrotra’s second-order

corrector, is too demanding and not always necessary. In generating a corrector

direction, we propose to use the difference between the achievable complemen-

tarity products and a carefully chosen target vector of complementary products.

Moreover, it is unrealistic to expect that a corrector direction ∆cw can absorb the

error made by a predictor direction ∆pw; however, this direction can be used to

find a new composite direction ∆ωw = ∆pw+ω∆cw, where ω ∈ [0, 1]. We propose

to measure the quality of the composite direction by the length of the step that

can be made along it, and choose the ω that maximizes such step. The intro-

duction of the weighting mechanism, which determines the contribution of each

corrector direction to the overall search direction, allows a better implementation

of the targeting procedure of the multiple centrality correctors technique with

improved performance. We have implemented the weighted correctors strategy

in the hopdm interior point code, and have studied its performance with thor-

ough computational experiments. From this testing we see that such a strategy

produces considerable improvements, particularly for large-scale problems.

Our third contribution is in the context of the generation of warm-start it-

erates for stochastic linear programs, and the practical value of the symmetric

neighbourhood is also appreciable here. In this setting we develop an efficient way

of constructing an advanced starting point which greatly reduces the computa-

tional effort of solving a problem instance. Large-scale stochastic linear programs

are very structured problems that are generated from event trees which can be

very big, particularly in the multistage case. We show that it is possible to ex-

ploit the inherent structure of the stochastic programming problem and obtain

a computationally viable warm-start point by solving a problem of much smaller

dimension that corresponds to a reduced event tree. We produce a reduced tree

by trying to capture the important information in the stochastic scenario space

while keeping the dimension of the corresponding (reduced) deterministic equiv-

alent small. It is essential for the effectiveness of an interior point algorithm that

the iterates do not approach the boundary of the feasible region too early. This

is particularly important in reoptimization, as the warm-start iterate should be

able to quickly absorb perturbations in the problem data. This suggests solving

the reduced problem with low accuracy. As the size of the reduced problem is

generally very small, this phase of the algorithm is relatively inexpensive. Once

an approximate reduced-tree solution is found, we then expand it to the full

size of the original problem, thus generating the warm-start point. We present

theoretical conditions that the warm-start iterate should satisfy to guarantee a
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successful warm-start of the complete problem. We also show that from an it-

erate within the symmetric neighbourhood of the central path, we can produce

a corrector direction that absorbs the perturbation and keeps the point inside a

larger symmetric neighbourhood, and move along such direction with full step.

The implementation within the hopdm and oops interior point solvers shows

remarkable advantages on a series of problem instances.

The original results presented in this thesis have been the basis for two papers

that have been submitted for publication, jointly with Jacek Gondzio [18], and

with Jacek Gondzio and Andreas Grothey [19].

Outline of the thesis

In Chapter 2 we introduce and formalise some basic notions on linear program-

ming and present the main theoretical results that are at the heart of many

interior-point methods. We concentrate on the path-following class of primal–

dual interior point methods, as they provide the framework for most practical

implementations. Alongside reviewing the theoretical achievements known in the

literature, we introduce and analyse the concept of symmetric neighbourhood.

Chapter 3 is dedicated to presenting the main techniques adopted in compu-

tational implementations of interior point methods. We consider when theoretical

analysis and practical implementation diverge, paying particular attention to two

important strategies used in generating effective search directions: Mehrotra’s

predictor–corrector algorithm and the multiple centrality correctors technique.

We also review the main results in the area of warm-start approaches for interior

point methods.

In Chapter 4 we continue the discussion on Mehrotra’s algorithm, presenting

some recent insight on the cases of failure of the corrector direction, and studying

the use of weighted correctors in the generation of search directions. This will

be compared to the subspace searches approach, which uses an auxiliary linear

subproblem to combine a given set of directions. The advantages and drawbacks

of both strategies is presented together with a rich computational study on the

implementation of the weighted correctors technique.

In Chapter 5 we turn our attention to the field of stochastic programming,

explain its relevance and present some basic concepts. We introduce a warm-

start technique that exploits the inherent structure of stochastic linear programs.

Alongside some theoretical results, we show our computational experience on

some standard test problems and larger instances coming from the telecommuni-

cation industry.

Finally, in Chapter 6 we present our conclusions and discuss directions for

future work.
12



Chapter 2

Interior point methods
for linear programming.

The theory at the heart of interior point methods is well understood, and a number

of survey papers, monographs and academic books are available [38, 41, 79, 80,

86, 89, 90]. This chapter is devoted to the derivation and analysis of primal–

dual path-following interior point methods. We present the elements that are at

the basis of this successful class of algorithms, concentrating on their theoretical

properties and attractive features. We also introduce and analyse the concept of

a symmetric neighbourhood, and its consequences for practical algorithms.

2.1 Derivation of primal–dual methods

Consider the following primal–dual pair of linear programming problems in stan-

dard form

min
x

cT x max
(y,s)

bT y

(P ) s.t. Ax = b, (D) s.t. AT y + s = c,
x ≥ 0; s ≥ 0,

(2.1)

where A ∈ R
m×n, x, s, c ∈ R

n and y, b ∈ R
m, m < n. We assume, without loss of

generality, that A has full row rank, as linearly dependent rows can be removed

without changing the solution set. This implies that a feasible s ≥ 0 determines

in a unique way the value of y. In fact, the y variables can be eliminated thus

producing the symmetric combined primal–dual form studied by Todd and Ye

[87].

We define the sets of primal feasible points and of dual feasible points as

P = {x : Ax = b, x ≥ 0}, D = {(y, s) : AT y + s = c, s ≥ 0},

and, using this notation, we can rewrite the primal–dual pair (2.1) as

min
x

cT x s.t. x ∈ P; max
(y,s)

bT y s.t. (y, s) ∈ D.
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In the derivation of interior point methods we will concentrate on two closely

related sets: the set of primal interior points and the set of dual interior points

P0 = {x ∈ P : x > 0}, D0 = {(y, s) ∈ D : s > 0}.

We introduce the notation

w = (x, y, s)

to denote a primal–dual point, and we consider the set of feasible primal–dual

points and the set of primal–dual interior points

F = P ×D, F0 = {w ∈ F : (x, s) > 0}.

A primal–dual point w ∈ F0 is said to be strictly feasible for the primal–dual pair

(2.1).

We recall here some well-known results on the relationship between problems

(P ) and (D). These can be found in plenty of sources, for example [17, 82]. Our

presentation is inspired by [42, 63, 90].

Lemma 2.1 (Weak duality). Let w ∈ F . Then cT x ≥ bT y.

Proof. Since x ∈ P and (y, s) ∈ D, the following holds:

cT x − bT y = cT x − xT AT y = xT (c − AT y) = xT s ≥ 0.

The weak duality property states that the primal and dual objective values

bound each other. The difference cT x − bT y is called the duality gap. When the

objectives in both problems achieve their respective bounds, that is, when the

duality gap is zero, the primal–dual solution has to be optimal. This can be

formalised in the following lemma.

Lemma 2.2 (Strong duality). A point x ∈ P is an optimal solution if and

only if there exists a pair (y, s) ∈ D such that cT x = bT y.

Problem (P ) has a feasible solution if and only if P 6= ∅. If P 6= ∅ and

D 6= ∅, then both (P ) and (D) admit an optimal solution w∗ = (x∗, y∗, s∗), and

by Lemma 2.2 the objective function values of both problems coincide at that

point. Otherwise, if one of the sets P or D is empty, then the other is either

unbounded or empty as well. In such cases, an optimal solution for problem (2.1)

does not exist.

Optimality conditions let us recognise that a solution has been found. They

also provide insight on the development of algorithms for finding a solution. The
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Karush-Kuhn-Tucker (kkt) conditions express first-order optimality conditions

for the primal–dual pair (2.1). They can be written as

Ax = b
AT y + s = c

XSe = 0
(x, s) ≥ 0,

(2.2)

where X,S ∈ R
n×n are diagonal matrices with elements xi and si respectively,

and e ∈ R
n is a vector of ones. In other words, an optimal solution is characterised

by primal feasibility, dual feasibility and complementarity.

Complementarity can be seen as a certificate for optimality in linear program-

ming [47, 82]. For non-optimal feasible iterates, complementarity measures the

distance of the iterate to optimality:

cT x − bT y = xT s. (2.3)

The quantity xT s is called the complementarity gap. When it is driven to zero,

then a feasible solution is also optimal. We remark that the equality between

the duality gap and the complementarity gap of equation (2.3) holds only for a

feasible point.

In what follows, we make the standard assumption for the development of

interior point methods that P0 6= ∅ and D0 6= ∅. This is also referred to as the

interior point assumption. The interior point assumption corresponds to assum-

ing that the primal–dual optimal face is bounded [42, Lemma 2.2]. Cases when

this assumption does not hold can be considered by allowing the algorithm to

accept infeasible iterates (see Section 2.2.2) or by introducing some controlled

perturbations that enlarge the primal–dual feasible set [16].

2.1.1 The barrier problem

Many algorithms used in mathematical programming can be interpreted as path-

following. Here we restrict our attention to the path described by the use of a

logarithmic barrier function in linear programming. Given the linear program in

standard form (P ), it is possible to write the corresponding barrier problem:

(Pµ) min
x

cT x − µ

n∑

i=1

ln xi s.t x ∈ P0.

Problem (Pµ) denotes a family of problems parameterised by the scalar quantity

µ > 0 (typically small), which is called the barrier parameter in the interior point

literature.
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The presence of the logarithmic barrier in the objective function of (Pµ) forces

the iterates to stay in the interior of the feasible region, as this term heavily

penalises points that are too close to the boundary. However, the influence exerted

by the logarithmic barrier can be controlled through the penalty parameter µ. The

weight on the barrier regulates the distance from the iterates to the boundary: as

µ tends to zero, problem (Pµ) resembles problem (P ) more and more closely. It

is worth noting that such an approach is viable only if it is actually possible to

find a point that strictly satisfies the constraints, that is, if P0 6= ∅. If the feasible

domain P is bounded, then both (P ) and (Pµ) admit optimal solutions.

The objective function of problem (Pµ) is a strictly convex function. Therefore,

for a fixed µ, the problem is either unbounded or has exactly one minimum.

The minimizer, if it exists, is completely characterised by the associated kkt

conditions:
Ax = b

µX−1e + AT y = c
x > 0.

By substituting s = µX−1e, we obtain the standard (primal–dual) formulation of

the so called perturbed kkt conditions:

Ax = b
AT y + s = c

XSe = µe
(x, s) > 0.

(2.4)

If the perturbed kkt conditions (2.4) have a solution for a particular µ̂ > 0,

then it has solution for every µ > 0. System (2.4) determines a unique continuous

smooth curve w(µ) = (x(µ), y(µ), s(µ)) toward the optimal set as µ → 0. In

interior-point terminology, this curve is called the central path. The study of the

primal–dual properties of the central path was pioneered by Megiddo [63] and

Bayer and Lagarias [5].

Under the assumptions that for a particular µ > 0 the point w(µ) is primal

and dual feasible, we can state a similar result to the one expressed by (2.3), and

define the duality gap g(µ) as a function of the barrier parameter:

g(µ) = cT x(µ) − bT y(µ) = x(µ)T s(µ). (2.5)

That is, for any value of µ the duality gap corresponds to the complementarity

gap. Hence reducing either of them is identical.

Moreover, as XSe − µe = 0 corresponds to xisi = µ, i = 1, . . . , n, we have

x(µ)T s(µ) =
n∑

i=1

xi(µ)si(µ) = nµ, (2.6)
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and for µ → 0, also g(µ) → 0. Equations (2.5) and (2.6), together with the fact

that cT x(µ) ≥ cT x∗ = bT y∗ ≥ bT y(µ), imply that as µ → 0

cT x(µ) → cT x∗ and bT y(µ) → bT y∗,

so the objective function values for the perturbed problem converge to those

achieved by an optimal solution (x∗, y∗, s∗) of the original problem. Furthermore,

the following, stronger result holds [63].

Theorem 2.3. Under the assumptions of primal feasibility, dual feasibility, and

full row rank of matrix A, then as µ → 0 :

x(µ) → x∗, (y(µ), s(µ)) → (y∗, s∗).

Theorem 2.3 states that, under standard well-definedness conditions, the cen-

tral path converges to a optimal solution of problem (2.1). Therefore, the central

path can be used as a guideline to reach the optimal set. Algorithms that rely

on the central path for finding the solution belong to the path-following class of

interior point methods. We will describe them in more detail in Section 2.2.

The solution reached by following the central path is characterised by strict

complementarity. This is described in the following result [90, 91].

Theorem 2.4 (Strict complementarity). If (P ) and (D) are feasible, then

there exist a point x∗ ∈ P and a pair (y∗, s∗) ∈ D such that

(x∗)T s∗ = 0 and x∗
i + s∗i > 0, i = 1, . . . , n.

A solution (x∗, s∗) that satisfies the above theorem is said to be strictly com-

plementary. On the grounds of a strictly complementary solution we can define

the concept of optimal partition. Following Jansen [47], we define the support set

of a vector v ∈ R
n as

σ(v) = {i : vi > 0, i = 1, . . . , n},

and partition the set of indices {1, . . . , n} as

B = σ(x∗), M = σ(s∗).

From Theorem 2.4 it follows that this partition is well-defined, in the sense that a

strictly complementary solution satisfies both B∩M = ∅ and B∪M = {1, . . . , n}.
The notions of strict complementarity and optimal partition are recurrent motifs

in the analysis of interior point methods.

In the common case of multiple solutions, an interior point method algorithm

terminates at the analytic center of the optimal face rather than at a vertex; in
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some respects, through the concept of optimal partition, we can interpret this

situation as having determined the whole set of optimal solutions. In contrast,

the choice of the solution vertex provided by the simplex method is arbitrary, and

depends on factors like the pivoting rule.

Often having a basic solution that identifies a vertex is considered to be an

exact solution. However, we should discuss what we mean by “exact” solution.

In most cases we do not need the additional precision of being on a vertex solu-

tion rather than at the analytic center of the optimal face. In this sense, integer

programming represents a notable exception, as the integer solutions are at the

vertices of the convex hull of feasible integer points. The difference between hav-

ing an optimal basis or an optimal partition has important consequences on the

use of the solution for sensitivity analysis [47, 93].

Vavasis and Ye [88] studied the properties of the curvature of the central path,

discovering that the central path is characterised by O(n2) curves of high degree

and segments where it is relatively straight. Such curves appear in correspondence

with changes in the optimal partition. Close to the end, when the optimal partition

has been identified, the central path becomes a straight line [63]. In this region,

the algorithm displays the quadratic convergence property typical of Newton’s

method.

We now consider the limit of (Pµ) for µ → ∞, and therefore find the point

from which the central path departs. This corresponds to finding the point x̂ that

minimizes the barrier function, that is

x̂ = arg min
x∈P0

(
−

n∑

i=1

ln xi

)
.

The point x̂ is the analytic center of the feasible polytope, and was first studied

by Sonnevend [84]. Given the strict convexity of the barrier function, the concept

of analytic center is well defined. As the analytic center minimizes the barrier, it

is the point farthest away from the boundary.

However, there is a problem with defining the central path in terms of analytic

center: the central path is affected by the presence of redundant constraints. This

happens because it is an exclusively analytic concept, which does not exploit

geometric considerations. To overcome this disadvantage, other types of centers

(center of gravity, center of the ellipsoid of maximum volume that can be inscribed

in P , volumetric center) can be defined, but they usually are too demanding to

compute [41].

Such a drawback of the central path has been shown to have the potential for

extreme consequences by Deza et al. [23], who managed to replicate the behaviour

of the simplex method on the Klee-Minty cube within an interior point context.
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This was obtained by adding an exponential number of redundant constraints

parallel to the faces of the cube, so that the central path gets heavily distorted

and goes through an arbitrarily small neighbourhood of all vertices of the cube.

Here we mention the fact that presolve techniques are usually implemented

to find and remove as many as possible of these constraints, but while they are

based on successful heuristics, they are not optimal. In particular, they may find

implied constraints hard to detect [16].

2.1.2 Neighbourhoods of the central path

As we have seen, following the central path is the recommended way of travers-

ing the interior of the feasible region towards the optimal solution. Nevertheless,

it should be clear that keeping the iterates exactly on the central path is an

unachievable aim. Finding a point that solves the perturbed complementarity

conditions (2.7) for a specific µ is as difficult as solving the optimization prob-

lem itself. Therefore, we never insist on this extremely restrictive requirement,

but we rather allow the iterates to be somewhere around the central path. This

leads to the introduction of the concept of neighbourhood of the central path.

We can define several neighbourhoods, characterised by different properties. Two

neighbourhoods are often used in theoretical developments.

The first is based on the Euclidean norm, and it is often referred to as the

tight neighbourhood:

N2(θ) = {w ∈ F0 : ‖XSe − µe‖2 ≤ θµ},

where θ ∈ (0, 1). This neighbourhood defines points which lie very close to the

central path. Search directions generated from points in this neighbourhood can

be followed with a full step, and the barrier parameter can be decreased by a

small amount at each iteration (giving rise to the name of short-step algorithms

to the algorithms that are based on this neighbourhood). The closeness to the

central path that the tight neighbourhood imposes and maintains produces the

best convergence result for linear programming: short-step algorithms converge in

O(
√

nL) iterations [55, 72]. However, since the reduction in the barrier parameter

at each iteration is very small, the practical value of short-step algorithms is

limited.

The other commonly used neighbourhood is based on the one-sided infinity

norm, and it is often called the wide neighbourhood:

N−∞(γ) = {w ∈ F0 : xisi ≥ γµ, i = 1, . . . , n},

where γ ∈ (0, 1). Algorithms based on such a neighbourhood are allowed to gen-

erate iterates that follow the central path more loosely. The iterates have more
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freedom of movement as they can get closer to the boundary of the feasible set.

However, the Newton direction computed from points in the wide neighbourhood

has weaker properties, and a linesearch procedure is needed to ensure that the

positivity of the (x, s) iterates is preserved. Algorithms based on the wide neigh-

bourhood (usually called long-step algorithms) are less conservative than their

short-step counterparts, and can decrease the barrier parameter more rapidly.

Efficient implementations of interior point methods are based on some variation

of a long-step algorithm.

In Section 2.3 we will study a variation of the N−∞ neighbourhood which

better describes the centrality requirements needed for a practical algorithm.

2.2 Path-following algorithms

We now bring together the elements we presented above and describe a complete

path-following algorithm. We then discuss some theoretical results for algorithms

in this class.

Primal–dual path-following methods solve the perturbed kkt conditions (2.2)

by asking the complementarity pairs to align to a specific barrier parameter µ > 0,

XSe = µe, (2.7)

while enforcing (x, s) > 0. However, up to now, we have not defined how to choose

the barrier parameter µ and how to update it at each iteration.

Given a starting iterate w0 that belongs to some neighbourhood N such that

(x0, s0) > 0, the value µ0 of the initial barrier parameter is given by

µ0 =
(x0)T s0

n
.

With the progress of iterations we would like the perturbed kkt conditions (2.4)

to better and better approximate the system (2.2) of optimality conditions for

the original problem. Hence, at each iteration, µ is monotonically decreased by

the factor σ ∈ (0, 1), called the centering parameter for reasons that will become

clear later on. The choice of the centering parameter σ is algorithm-dependent.

We provide theoretical insights on some possible choices in Section 2.2.1.

Path-following interior point methods seek a solution to the system of equa-

tions (2.4)

F (w) =




Ax − b

AT y + s − c
XSe − σµe



 = 0, (2.8)
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which is nonlinear in the perturbed complementarity constraints. We use New-

ton’s method to linearise the system around the current point according to

∇F (w)∆w = −F (w),

where ∇F (w) is the Jacobian of the function (2.8) evaluated at the current

primal–dual iterate w. The linearisation produces the Newton system




A 0 0
0 AT I
S 0 X








∆x
∆y
∆s



 =




b − Ax

c − AT y − s
−XSe + σµe



 =




ξb

ξc

ξµ



 , (2.9)

which needs to be solved for a search direction ∆w = (∆x, ∆y, ∆s), with µ =

xT s/n, σ ∈ (0, 1). We will discuss some ways of solving system (2.9) in Sec-

tion 3.1.4. The search direction ∆w thus computed is used to generate a new

iterate

wk+1 = wk + α∆w,

where α ∈ (0, 1] is the largest feasible stepsize computed in such a way that

wk+1 ∈ N .

In Algorithm 2.1 we present the general framework of a primal–dual path-

following algorithm. We will provide more details on each of the steps of this

algorithm in Chapter 3.

Algorithm 2.1 Primal–dual path-following algorithm

Given: An initial iterate w0 ∈ N such that (x0, s0) > 0;

Repeat:
Solve system (2.9) with a specified σ for a search direction ∆w.

Evaluate the maximum feasible stepsize αk in direction ∆w.

Update the iterate wk+1 = wk + αk∆w.

Until Some termination criteria are met.

2.2.1 Feasible methods

A feasible algorithm is characterised by the requirement that all primal and dual

iterates always lie within the interior of the feasible region. For this reason, these

algorithms need to start from a strictly feasible point w0 ∈ F0.

In the feasible case, ξb = ξc = 0 in the right-hand side of system (2.9). Since

the search direction computed from (2.9) guarantees

A∆x = 0 and AT ∆y + ∆s = 0, (2.10)
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we can easily verify that feasibility is maintained throughout the algorithm:

A(x + ∆x) = Ax + A∆x = b,

AT (y + ∆y) + (s + ∆s) = (AT y + s) + (AT ∆y + ∆s) = c.

Moreover, using (2.10) we obtain

∆xT ∆s = −∆xT (AT ∆y) = −(A∆x)T ∆y = 0. (2.11)

As far as the progress in optimization is concerned, we can evaluate the com-

plementarity gap that we would obtain when taking a step of length α in the

direction ∆w:

x(α)T s(α) = xT s + α(sT ∆x + xT ∆s) + α2∆xT ∆s = (1 − α(1 − σ))xT s,

where we used (2.11) and the fact that sT ∆x+xT ∆s = −xT s+σµ. Now, dividing

through by n, we obtain

µ(α) = x(α)T s(α)/n = (1 − α(1 − σ))µ. (2.12)

From (2.12) we observe that the progress in optimization depends on both

α and σ. For a fixed σ, the length of the step α taken in the search direction

∆w computed from (2.9) measures the reduction in complementarity gap: the

longer the step, the bigger the reduction. This motivates the attempts to enlarge

the stepsize by the use of corrector techniques (see Sections 3.2 and 3.3 and

Chapter 4).

The centering parameter σ plays an important role as well. We can see that

the biggest reduction is obtained for σ = 0. This does not come as a surprise,

as the choice of σ = 0 corresponds to solving the kkt conditions (2.2) which

describe the optimality conditions for the linear program (2.1). The choice of

σ = 1, instead, leaves the complementarity gap unchanged. While this does not

produce progress towards optimality, it tends to move the iterate closer to the

central path. A step taken in a direction computed with σ = 1 is often called a

pure centering step. It is therefore essential to choose σ appropriately, trying to

balance the often conflicting aims of optimality and centrality.

Kojima, Mizuno and Yoshise [56] proposed a polynomial-time long-step algo-

rithm that makes use of the wide N−∞ neighbourhood to measure the distance of

the iterates from the central path. The update of the barrier parameter for this

family of algorithms happens for a constant

σ ∈ [σmin, σmax]
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independent of n. This is an aggressive update, and a full Newton step is usually

not feasible, so the stepsize needs to be damped. Also, more than one iteration

may have to be performed before reducing the barrier parameter again. This

algorithm, as well as many similar variants, converges in O(nL) iterations.

This result was then refined by the same group [55] and by Monteiro and Adler

[72], who both presented a primal–dual algorithm for linear programming based

on the tight N2 neighbourhood with the property of convergence in O(
√

nL) iter-

ations. This is still the best complexity result for interior point methods for linear

programming. In a short-step feasible method based on the N2 neighbourhood

the barrier parameter is reduced by

σ = 1 − δ/
√

n (2.13)

at each iteration, for some positive constant δ, usually very small (0.05 according

to Gonzaga [40]). As σ is always very close to 1, a lot of emphasis is put on main-

taining centrality rather than advancing towards optimality. The slight reduction

of the barrier parameter at each step guarantees that one iteration of Newton’s

method can keep the point in the tight neighbourhood of the central path. The

choice of (2.13) allows convergence in O(
√

nL) iterations to be proved. However,

this is a worst-case analysis, and in practice the same would happen even with

a bigger update of the barrier parameter. This suggests that studying ways of

allowing a more substantial reduction of the barrier parameter, at least in some

iterations, would be worthwhile.

One important result in this direction was obtained by Mizuno, Todd and

Ye [71], who introduced a short-step predictor–corrector method. Their strategy

uses two nested neighbourhoods N2(θ
2) and N2(θ), θ ∈ (0, 1), and exploits the

quadratic convergence property of Newton’s method in such a tight neighbour-

hood of the central path. Their algorithm alternates between two search directions

characterised by different properties. Starting from a point in the N2(θ
2) neigh-

bourhood, by choosing σ = 0 in (2.9), the predictor direction gains optimality,

possibly at the expense of worsening centrality, keeping the iterate in a larger

neighbourhood N2(θ) of the central path. Then, a pure re-centering step is per-

formed by setting σ = 1, leaving the duality gap unchanged but moving the

iterate back into a tighter N2(θ
2) neighbourhood. Hence, on every second step

the algorithm produces a point in N2(θ
2).

The Mizuno-Todd-Ye predictor–corrector algorithm [71], achieves the O(
√

nL)

convergence property thanks to the optimizing predictor direction which guaran-

tees the same progress achievable by a short-step feasible method, with the only

difference that the value of the barrier parameter is reduced over two iterations.
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An important contribution that this technique makes, is the idea of target-

ing optimality and centrality independently. The use of the very restrictive N2

neighbourhood makes the Mizuno-Todd-Ye algorithm unattractive for practical

applications, but it provides a scheme upon which more computationally attrac-

tive methods can be constructed, as we will discuss in Chapter 3.

2.2.2 Infeasible methods

The results presented up to here concentrated on feasible methods. For these

methods we assume that a strictly feasible starting point is readily available.

However, finding a strictly feasible starting point is, in general, a nontrivial task,

as solving the feasibility problem is an optimization problem in its own right.

Moreover, the feasible region may have an empty interior, in which case the

theory developed above does not apply. Allowing an infeasible starting point is

particularly important for the algorithms implemented in practical interior point

solvers. For these reasons, a need exists for developing techniques that do not

require feasibility of the starting iterate.

A way to find a strictly feasible starting point involves solving an artificial

Phase I subproblem by using the big-M method. However, the performance is

dependent on the choice of the values given to the weights, and the use of very

large values, while theoretically satisfying, causes numerical instabilities [58]. This

is worsened by the presence of dense columns that compromise the computational

efficiency.

A very different approach is based on the homogeneous self-dual formula-

tion introduced by Ye, Todd and Mizuno [92]. This and a simplified variant are

presented in [90, Chapter 9]. The self-dual formulation wraps the optimization

problem into one of slightly larger dimension, but for which a strictly feasible

solution is known from the start. Therefore, once embedded in the homogeneous

self-dual form, the problem can be solved with a feasible algorithm. This formu-

lation also has the very appealing property of being able to detect infeasibility

with accuracy. The use of a self-dual formulation, however, comes with a price

from a computational viewpoint, particularly because of the need for two extra

backsolves at each iteration.

It is possible to develop an algorithm which only requires the x and s com-

ponents to be strictly positive. This was initiated by Lustig [58], who proposed

some new feasibility restoration directions. These were obtained as limiting direc-

tions as the big-M weight tends to infinity, and were shown to be equivalent to

those obtained by an infeasible algorithm. However, it was the work of Kojima,

Megiddo and Mizuno [54] that provided full theoretical analysis of convergence
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of an infeasible interior point method as well as a stepsize rule that guarantees

global convergence of the algorithm.

In such an algorithm, all iterates are usually infeasible, but the limit points

are feasible and optimal. This is obtained by using a neighbourhood that admits

infeasible points:

N−∞(γ, β) = {w : ‖(ξb, ξc)‖ ≤ βµ
‖(ξ0

b , ξ
0
c )‖

µ0

, (x, s) > 0, xisi ≥ γµ, i = 1, . . . , n},

where γ ∈ (0, 1) and β ≥ 1 are parameters, and ξ0
b , ξ0

c are the primal and dual

residuals, respectively, at the initial iterate w0.

In the N−∞(γ, β) neighbourhood there is no strict feasibility requirement for

the iterates; however, the residuals at each iteration must be bounded above by

a multiple of the complementarity measure µ. By reducing µ we can force the

primal and dual residuals ξb and ξc to zero, thus approaching complementarity

and feasibility at the same speed.

Letting w(α) = (x(α), y(α), s(α)) = w + α∆w, then we can show that

ξb(α) = (1 − α)ξb and ξc(α) = (1 − α)ξc,

so infeasibilities reduce linearly with α, while for the complementarity gap

x(α)T s(α) = (1 − α(1 − σ))xT s + α2∆xT ∆s,

a reduction happens for a sufficiently small α. When feasibility is restored, that

is when ξb = ξc = 0, an infeasible algorithm becomes identical to a feasible

algorithm.

A globally convergent infeasible interior point algorithm has been implemented

and tested by Lustig, Marsten and Shanno [60], who report positive results on a

set of feasible test problems. The order of convergence for an infeasible algorithm

was established by Zhang [95] to be O(n2L).

2.3 Symmetric neighbourhood

In Section 2.1.2 we discussed two neighbourhoods employed in the theory of

interior point methods, and illustrated their main features and drawbacks. The N2

neighbourhood follows the central path very tightly, and the short-step methods

based on it are extremely conservative and, in practice, very slow. The N−∞

provides a much better framework for practical algorithms, as it allows the barrier

parameter to reduce quickly. However, as it does not actively enforce an upper

bound on the complementary products, it may allow the iterates to produce very

unbalanced products.
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The issue of unbalanced complementary products is very important for the

practical success of an interior point code. It’s important to stress how the com-

plementary pairs play a role in the Newton system, and how their bad scaling

causes a bad behaviour of Newton’s method, which produces unreliable directions.

Jansen [47] considered the ratio

̺(XSe) =
min(XSe)

max(XSe)
(2.14)

between the smallest and the largest complementarity pair as an indication of the

quality of a point. The ratio (2.14) is a measure between 0 and 1, and is 1 for

a perfectly centered iterate. Atkinson and Vaidya [4] noticed that the region in

which Newton’s method converges becomes smaller as the ratio ̺(XSe) decreases.

We argue that the quality of centrality (understood in a simplified way as

complementarity) for a practical implementation of an interior point algorithm

is not well characterised by either of two neighbourhoods N2 or N−∞ commonly

used in theoretical developments of interior point methods.

Practical experience with the primal–dual algorithm in hopdm [31] suggests

that one of the features responsible for its efficiency is the way in which the qual-

ity of centrality is assessed. By “centrality” we understand here the spread of

complementarity products xisi, i = 1, . . . , n. Large discrepancies within the com-

plementarity pairs, and therefore bad centering, create problems for the search

directions: an unsuccessful iteration is caused not only by small complementarity

products, but also by very large ones. This can be explained by the fact that

Newton’s direction tries to compensate for very large products, as they provide

the largest gain in complementarity gap when a full step is taken. However, the

direction thus generated may not properly consider the presence of very small

products, which then become blocking components when the stepsizes are com-

puted.

The notion of spread in complementarity products is not adequately repre-

sented in a computational setting by either of the two neighbourhoods N2 or

N−∞. To overcome this disadvantage, here we formalise a variation on the usual

N−∞(γ) neighbourhood, in which we introduce an upper bound on the comple-

mentarity pairs. We propose using a symmetric neighbourhood Ns(γ), in which

complementarity pairs have to satisfy γµ ≤ xisi ≤ γ−1µ, where γ ∈ (0, 1), for a

strictly feasible iterate w ∈ F0. This neighbourhood was implicitly used in [32] to

define an achievable target for multiple centrality correctors (we refer the reader

to Section 3.3).

We define the symmetric neighbourhood to be the set

Ns(γ) = {w ∈ F0 : γµ ≤ xisi ≤
1

γ
µ, i = 1, . . . , n}, (2.15)
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where µ = xT s/n, and γ ∈ (0, 1).

While the N−∞ neighbourhood ensures that some products do not approach

zero too early, it does not prevent products from becoming too large with respect

to the average. In other words, it does not provide a complete picture of the

centrality of the iterate. The symmetric neighbourhood Ns, on the other hand,

promotes the decrease of complementarity pairs which are too large, thus taking

better care of centrality.

An upper bound on the size of complementary products is implicit in the

N−∞ neighbourhood. To find it, suppose that all but one of the complementarity

products are at the lower bound γµ:

nµ = x1s1 +
n∑

i=2

xisi = x1s1 + (n − 1)γµ,

from which it follows that in general

xisi ≤ (n(1 − γ) + γ)µ, i = 1, . . . , n. (2.16)

We note the dependence on the problem dimension in the definition of the upper

bound, hence its ineffectiveness for large-scale problems.

We now determine the value of n for which the upper bound of the symmetric

neighbourhood is tighter than the implicit upper bound (2.16), that is

(n(1 − γ) + γ)µ >
1

γ
µ.

After some trivial manipulations we find that the symmetric neighbourhood im-

poses a tighter upper bound for

n >
1 + γ

γ
.

For a value of γ = 0.1, the bound is tighter whenever n > 11.

2.3.1 Theoretical analysis

Many theoretical developments aim at lowering the upper bound on the number of

steps needed for convergence. The results provided by such worst-case complexity

analysis are informative but exceedingly pessimistic.

Theoretical proofs of complexity generally follow a common scheme. First they

rely on a computable measure of the closeness to the central path, accomplished

by the concept of neighbourhood. Second, they show that the direction computed

by solving the Newton system (2.9) can be followed with a strictly positive step

(and therefore some progress is made at every iteration) and that it generates an
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iterate that retains the property of being in some neighbourhood of the central

path (possibly larger than the one before). Finally, they require a decrease in

the barrier parameter that allows derivation of a polynomial upper bound on the

number of iterations needed to reach the desired level of accuracy.

We analyse a long-step feasible path-following algorithm based on the sym-

metric neighbourhood Ns(γ), where the search direction ∆w is found by solving

system (2.9) with r = (0, 0,−XSe+σµe)T , σ ∈ (0, 1), µ = xT s/n. The exposition

closely follows the presentation of Wright [90, Chapter 5].

Our main results are presented in Theorem 2.6 and Theorem 2.7. However,

we first need a technical result that corresponds to Lemma 5.10 in [90], the proof

of which is unchanged by the use of Ns rather than N−∞.

Lemma 2.5. If w ∈ Ns(γ), then ‖∆X∆Se‖ ≤ 2−3/2
(
1 +

1

γ

)
nµ.

We now prove that it is possible to find a strictly positive stepsize α such that

the new iterate w(α) = w + α∆w does not leave the symmetric neighbourhood,

and thus this neighbourhood is well defined. This result extends Theorem 5.11 in

[90].

Theorem 2.6. If w ∈ Ns(γ), then w(α) ∈ Ns(γ) for all

α ∈
[
0, 23/2γ

1 − γ

1 + γ

σ

n

]
.

Proof. Let us express the complementarity product in terms of the stepsize α

along the direction ∆w:

xi(α)si(α) = (xi + α∆xi)(si + α∆si)

= xisi + α(xi∆si + si∆xi) + α2∆xi∆si (2.17)

= (1 − α)xisi + ασµ + α2∆xi∆si.

We need to study what happens to this complementarity product with respect

to both bounds of the symmetric neighbourhood. Let us first consider the bound

xisi ≤ 1
γ
µ. By Lemma 2.5, equation (2.17) implies

xi(α)si(α) ≤ (1 − α)
1

γ
µ + ασµ + α22−3/2

(
1 +

1

γ

)
nµ.

At the new point w(α), the duality gap is x(α)T s(α) = nµ(α). The relation

xi(α)si(α) ≤ 1
γ
µ(α) holds provided that

(1 − α)
1

γ
µ + ασµ + α22−3/2

(
1 +

1

γ

)
nµ ≤ 1

γ
(1 − α + ασ)µ,
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from which we derive a first bound on the stepsize:

α ≤ 23/2 1 − γ

1 + γ

σ

n
= ᾱ1.

Considering now the bound xisi ≥ γµ and using again Lemma 2.5, equation

(2.17) implies

xi(α)si(α) ≥ (1 − α)γµ + ασµ − α22−3/2

(
1 +

1

γ

)
nµ.

Hence, xi(α)si(α) ≥ γµ(α) provided that

(1 − α)γµ + ασµ − α22−3/2

(
1 +

1

γ

)
nµ ≥ γ(1 − α + ασ)µ,

from which we derive a second bound on the stepsize:

α ≤ 23/2γ
1 − γ

1 + γ

σ

n
= ᾱ2.

Therefore, for

α ∈ [0, min(ᾱ1, ᾱ2)] = [0, ᾱ2],

we satisfy both bounds of the symmetric neighbourhood.

To conclude our proof we need to show that the w(α) iterate is still strictly fea-

sible. Feasibility is trivially maintained, as it can be shown by the same argument

used in Section 2.2.1. For positivity, we have that

xi(α)si(α) ≥ γµ(α) = γ(1 − α(1 − σ))µ > 0,

as γ ∈ (0, 1), σ ∈ (0, 1), and µ > 0. Hence x(α) > 0 and s(α) > 0, and w(α) ∈
Ns(γ).

In the next theorem, we prove the global linear convergence of the algorithm

based on the symmetric neighbourhood.

Theorem 2.7. Given γ and 0 < σmin < σmax < 1, there is a constant δ indepen-

dent of n such that

µk+1 ≤
(

1 − δ

n

)
µk, ∀k ≥ 0. (2.18)

Proof. Using (2.12) and Theorem 2.6, we have

µk+1 = [1 − α(1 − σ)] µk ≤
[
1 − 23/2

n
γ

1 − γ

1 + γ
σ(1 − σ)

]
µk.

The term σ(1 − σ) is concave and assumes strictly positive values in the inter-

val (0, 1), with its minimum attained at one of the endpoints of the interval.

Therefore, we prove our claim by setting

δ = 23/2γ
1 − γ

1 + γ
min

{
σmin(1 − σmin), σmax(1 − σmax)

}
.
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It is interesting to note that the introduction of the upper bound on the

complementarity pairs does not change the polynomial complexity result proved

for the long-step variant in the N−∞(γ) neighbourhood [90, Theorem 5.12]. In

fact, the following theorem holds.

Theorem 2.8. For a starting point w0 ∈ Ns(γ), γ ∈ (0, 1), such that µ0 ≤ 1/ǫτ ,

where ǫ > 0 is the convergence tolerance and τ > 0, there is an index K =

O(n ln 1
ǫ
) for which

µk ≤ ǫ

for all iterations k ≥ K.

Proof. This proof reworks Theorem 3.2 from [90] in our case. Iterating from (2.18)

we obtain

µk ≤
(

1 − δ

n

)k

µ0.

We now take logarithms of both sides

ln µk ≤ k ln

(
1 − δ

n

)
+ ln µ0 ≤ k ln

(
1 − δ

n

)
+ τ ln

1

ǫ
≤ −k

δ

n
+ τ ln

1

ǫ
,

where the last inequality is derived from the fact that ln(1 + β) ≤ β for β > −1.

The convergence tolerance is met when

−k
δ

n
+ τ ln

1

ǫ
≤ ln ǫ = − ln

1

ǫ
,

which holds for

k ≥ 1 + τ

δ
n ln

1

ǫ
.

Therefore, the additional upper bounds on the complementarity pairs intro-

duced with the symmetric neighbourhood do not produce any losses in the theo-

retical results proved for the N−∞, but contribute to providing a better practical

description of the centrality of a point. This understanding provides some addi-

tional insight into the desired characteristics of a well-behaved iterate.

The use of the symmetric neighbourhood will be one of the theoretical mo-

tivations of this work. Through it, in Section 3.3 we will put the work of [32]

inside a more sound framework. Then we will use it again in the presentation of

the weighted corrector directions strategy of Chapter 4, and in the analysis of an

original warm-start strategy for stochastic programming of Chapter 5.
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Chapter 3

Practical implementations
of interior point methods.

In this chapter we turn our attention to the computational side of interior point

methods. We concentrate on the main strategies which are at the basis of effective

implementations of interior point methods for linear programming, and present

other issues that are specific to practical algorithms. These have been documented

extensively; for example, see [3, 38, 90] and the references therein. We also review

some of the warm-start techniques for interior point methods that have been

proposed in the literature.

3.1 Considerations for practical algorithms

In Sections 2.2.1 and 2.2.2 we presented theoretical results on the order of conver-

gence of some interior point algorithms. In practice, convergence is much faster

than stated by those results, as optimality is usually reached in a number of it-

erations proportional to the logarithm of the problem dimension. This was also

shown by Ye [91, Chapter 6] through an average-case and probabilistic analysis.

As in the analysis of the simplex method, we see here a large gap between the

predicted and observed performances that is still to be fully understood.

Interior point methods are well-suited to solving very large scale optimization

problems. Practical algorithms are very different from the ones used for theoretical

purposes, and they usually implement some variation of infeasible interior point

algorithms. In particular they show differences in the computation of the search

directions, the evaluation of the stepsize, the use of the neighbourhood concept,

and the update of the barrier parameter. This is further complicated by issues

of computational efficiency and numerical stability, which often suggest the use

of amended techniques or heuristic approaches, which make the analysis of the

algorithms implemented in practice extremely difficult.
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In the rest of this section we illustrate some of the algorithmic differences that

are relevant to any practical implementation of interior point methods. They con-

cern the choice of the starting point, the techniques used for solving the Newton

system (2.9), the computation of the stepsize, the termination criteria and the

use of correctors in the search directions. This selection has been made according

to the relevance for this thesis. We will therefore not discuss other topics of ex-

treme importance in practical algorithms such as presolve techniques, detection

of infeasibilities, linear algebra implementations, use of iterative methods in the

solution of the Newton system, and many others. Valuable references for these

additional topics can be found in [3, 38].

3.1.1 Mehrotra’s starting point heuristic

The initialisation of an interior point method consists of two logically independent

steps: the presolve phase (in which some heuristic strategies are employed in

finding duplicate rows or columns, discovering fixed variables, removing redundant

constraints and tightening the bounds) and the process of finding an initial iterate.

Here we discuss only the latter, and refer the reader to [2] for a treatment of the

important topic of presolve techniques.

The choice of an initial iterate for interior point methods is a critical one. It

challenges both the feasible and infeasible algorithms, and the solutions proposed

in the two contexts are completely different. For infeasible algorithms the major

hurdle of finding a feasible starting point is removed. However, the practical per-

formance is very sensitive to the initial iterate, so the use of arbitrary points is not

recommended. In particular, two requirements become important: the centrality

of the point and the magnitude of the corresponding infeasibilities.

Mehrotra [65] introduced a tool to find a starting point that attempts to fulfil

the above requirements. In this heuristic, we solve two least squares problems

which aim to satisfy the primal and dual constraints:

min
x

xT x s.t. Ax = b,

min
(y,s)

sT s s.t. AT y + s = c.

These problems have solution

x̃ = AT (AAT )−1b, ỹ = (AAT )−1Ac, s̃ = c − AT ỹ.

The solution w̃ is further shifted inside the positive orthant, and the starting

point is

w0 = (x̃ + δxe, ỹ, s̃ + δse),
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where δx and δs are positive quantities. Their values depend on the distance

of x̃ and s̃ to non-negativity and an additional correction term to ensure strict

positivity.

The following variation is described in [38]:

min
x

cT x + ρxT x s.t. Ax = b,

min
(y,s)

bT y + ρsT s s.t. AT y + s = c,

where the parameter ρ is fixed to a predetermined value, in order to compensate

for the contribution of the primal and dual objectives.

Mehrotra’s starting point strategy has some drawbacks. It is scale dependent,

it is affected by the presence of redundant constraints, and it does not guarantee

producing a well-centered iterate. However it is commonly employed in interior

point codes, and it is considered to be an effective heuristic for determining a

starting point.

Considerations on what constitutes an appropriate starting point for interior

point methods will be discussed again in Section 3.4, where we survey some warm-

start strategies.

3.1.2 Computation of the stepsize

The computation of different stepsizes in the primal and dual spaces is done

almost universally in implementations of interior point methods for linear pro-

gramming. This has the advantage of speeding up the restoration of feasibility.

According to [38], the use of different stepsizes contributes to a reduction of 10%

in the number of iterations required when solving the Netlib set of tests.

In order to ensure that the (x, s) components of the iterate remain positive

after moving along the ∆w direction, we need to employ a linesearch procedure

and find the maximum feasible stepsizes αP and αD such that

x + αP ∆x > 0, s + αD∆s > 0.

The achievable stepsizes for a given search direction ∆w, in the primal and dual

space respectively, are computed as:

αP = min

{
− xi

∆xi

: ∆xi < 0

}
, αD = min

{
− si

∆si

: ∆si < 0

}
. (3.1)

These stepsizes are then shortened with a factor α0 = 0.99995 to ensure strict

positivity [38, 59].

We remark that in the computation of the stepsizes, we maintain the strict

positivity of the iterates, without restricting the point inside a neighbourhood.
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While this is done on the grounds of computational efficiency, we may lose the

global convergence property ensured by keeping the iterates in a neighbourhood

of the central path.

3.1.3 Termination criteria

In contrast to active set algorithms, interior point methods reach a solution only

asymptotically. Because of the presence of the barrier term that keeps the iterates

away from the boundary, they can never produce an exact solution. When working

in the context of limited precision of the floating point representation typical of

computers, feasibility and complementarity can be attained only within a certain

level of accuracy.

For these reasons, criteria have to be established according to which the termi-

nation of the algorithm can be decided. Some common termination criteria used

in practice are the following [38]:

‖Ax − b‖
1 + ‖x‖∞

≤ 10−p,
‖AT y + s − c‖

1 + ‖s‖∞
≤ 10−p,

|cT x − bT y|
1 + |bT y| ≤ 10−q. (3.2)

The values of p and q required depend on the specific application. In the literature,

it is common to use the value p = q = 8.

Another set of criteria, implemented in the interior point code pcx [20] is

given by:

‖Ax − b‖
1 + ‖b‖ ≤ 10−p,

‖AT y + s − c‖
1 + ‖c‖ ≤ 10−p,

µ

1 + |cT x| ≤ 10−q. (3.3)

The last condition in (3.3) is weaker than the corresponding one in (3.2) as,

through µ, it depends on n. Therefore, in this case it is common to require q = 10.

The third condition in each set is usually the most important, as it is com-

monly attained only after the feasibility requirements are satisfied. It is worth

noting that the criteria (3.2) and (3.3) are dependent on the scaling of the data.

Once a solution has been found within a prescribed optimality tolerance, such

a point can be projected onto a face of the polyhedron in an efficient way. This

can be done using a strongly polynomial algorithm due to Megiddo [64]. This

procedure goes under the name of basis crossover, as, given a complementary

primal–dual solution, it generates a basis that is both primal and dual feasible.

3.1.4 Solving the Newton system

The solution of system (2.9) is the computationally dominant step in each iter-

ation of an interior point algorithm. Throughout this thesis, we will restrict our

34



attention to using a direct approach in solving these equations. We remark, how-

ever, that a wealth of research has explored the use of iterative methods in the

computation of the search direction [7, 75].

System (2.9) is usually reduced to two other formulations by exploiting the

block structure of its matrix. The augmented system formulation is obtained by

using the last row of (2.9) to eliminate ∆s = X−1(ξµ − S∆x). This produces
[
−X−1S AT

A 0

] [
∆x
∆y

]
=

[
ξc − X−1ξµ

ξb

]
, (3.4)

which is a symmetric but indefinite system. By further eliminating ∆x, we reduce

system (3.4) to the set of normal equations

AD2AT ∆y = AD2(ξc − X−1ξµ) + ξb, (3.5)

where we introduced the notation D2 = S−1X. Under the standard assumption

of full row rank for A, matrix AD2AT is positive definite, since D2
i = xi/si > 0

for all i = 1, . . . , n.

Besides the issue of definiteness, the two formulations differ in terms of spar-

sity and conditioning, the normal equations usually being denser and worse con-

ditioned. The choice between the augmented system and normal equations tech-

niques depends also on the relative density of AD2AT with respect to A.

Normal equations are to be avoided when there are dense columns in A, as they

generate dense blocks in AD2AT . In the broad context of weighted least squares

computations, the choice between the augmented system and normal equations

techniques was studied long before the development of interior point methods,

see for example [25].

The augmented system formulation requires particular attention to the devel-

opment of linear algebra routines because it involves an indefinite matrix. This

raises problems of numerical stability, and an accurate choice of pivoting strate-

gies is fundamental. Maros and Mészáros [62] presented an in-depth study of the

properties of the augmented system formulation.

A direct approach computes the Cholesky factorisation M = LDLT of the

constraint matrix M with a lower triangular L and a diagonal matrix D. In the

computation of the factors, inevitably new nonzero entries are generated (the

so called fill-in). The amount of fill-in is strongly influenced by the ordering

in which the operations are performed. Various ordering techniques have been

developed to reduce the fill-in in the Cholesky factors, thus maintaining sparsity

and reducing the required work [81]. Once the factors have been computed, the

solution of system Mx = r happens in two steps: first by solving Lz = r for z,

then LT x = D−1z for x. The solution phase is also called the backsolve phase. A
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careful implementation of the linear algebra routines that perform the ordering,

factorisation and solution of the Newton system is one of the key points for an

efficient interior point solver.

The computation of the Cholesky factors dominates the cost of each iteration.

As this is usually a major computational task, the efforts in the theory and

practice of interior point methods concentrate on reducing the number of times the

Newton system matrix (2.9) has to be factorised. In particular, it is worth adding

more (cheap) backsolves if this reduces the number of (expensive) factorisations.

Two techniques have proved particularly successful in reducing the number of

iterations within practical algorithms: Mehrotra’s predictor–corrector algorithm

[65] and multiple centrality correctors [32]. Mehrotra’s predictor–corrector tech-

nique [65] uses two backsolves per factorisation; the multiple centrality correctors

technique [32] allows recursive corrections. A larger number of backsolves per

iteration is allowed, leading to a further reduction in the overall number of fac-

torisations. These techniques have been implemented in most commercial and

academic interior point solvers for linear and quadratic programming such as

bpmpd, Cplex, hopdm, Mosek, Ipopt, oops, ooqp, pcx and Xpress (see Ap-

pendix B in [90]).

Since these two methods were developed, there have been a number of at-

tempts to investigate their behaviour rigorously and thus provide further insight

on their success. Such objectives are difficult to achieve because correctors use

heuristics that are effective in practice but hard to analyse theoretically. Be-

sides, both correcting techniques are applied to long-step and infeasible algorithms

which have very little in common with the short-step and feasible algorithms that

display the best known theoretical complexity. These strategies will be the focus

of the next two sections.

3.2 Mehrotra’s predictor–corrector algorithm

In Mehrotra’s predictor–corrector algorithm [65], first a predictor direction is

generated to make progress towards optimality, and then a corrector is computed

to remedy for some of the error made by the predictor and move the iterate closer

to the central path.

A number of advantages can be obtained by exploiting the linearity in the

Newton system (2.9) and considering the right-hand as




b − Ax

c − AT y − s
−XSe + σµe



 =




b − Ax

c − AT y − s
−XSe



 +




0
0

σµe



 ,
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thus splitting the computation of the Newton direction into two steps, corre-

sponding to solving the linear system (2.9) independently for the two right-hand

sides above.

First, we can postpone the choice of the centering parameter σ and base it on

the assessment of the quality of the pure Newton direction computed with the

first part of the right-hand side; second, the error made by this direction may

be taken into account and corrected. Mehrotra’s predictor–corrector algorithm

[65] translates these observations into a powerful computational method. This

technique is extremely efficient in practice [59, 65]. Since its introduction, it has

been considered the method of choice for practical implementations because it

is usually very fast and reliable. Moreover, it has a convincing interpretation in

terms of second-order approximations to the central path.

3.2.1 Affine-scaling predictor direction

The predictor direction ∆aw = (∆ax, ∆ay, ∆as) is obtained by solving system

(2.9) with right-hand side

ra =




b − Ax

c − AT y − s
−XSe



 . (3.6)

This corresponds to computing the pure Newton direction for the original kkt

system (2.2), and this direction is often called the affine-scaling direction. This

direction optimizes strongly, as it targets a point for which all complementarity

products are zero. The achievable stepsizes for the predictor direction, in the

primal and dual space respectively, are computed according to (3.1).

As it targets a point for which XSe = 0, the affine-scaling direction may

be distracted by points that have small complementarity products but are not

optimal. In particular, it may well point towards the boundary of the positive

orthant or approach an infeasible vertex, generating a very small stepsize. This

effect is usually worsened if the current iterate is badly centered, and therefore

only a very small step is acceptable in order to maintain positivity or to keep the

iterate in some neighbourhood of the central path.

Since it completely ignores the central path, the affine-scaling direction is not

enough in a practical implementation of interior point methods, but has to be

complemented by other techniques. The role of the centering term is to remedy

this situation by causing the search direction to rotate towards the interior of

the feasible region, therefore allowing a longer stepsize. Tapia et al. [85] noted

that the choice of the centering parameter can be crucial both in theory and in
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practice, and suggest that it is a function of the Newton step. This calls for two

separate backsolves at each iteration.

3.2.2 Second-order corrector direction

Mehrotra’s algorithm exploits a centrality corrector in order to remedy badly

centered points. The purpose of this direction is to move closer to the central path,

and therefore reduce the spread in complementarity products, without aiming for

more optimality. This is a somewhat conservative direction, which it is hoped will

provide more room for movement at the next iteration.

One tool introduced by Mehrotra [65] is a dynamic evaluation of the centering

parameter σ. It is based on a simple heuristic that evaluates the quality of the

predictor direction in order to judge the amount of centering term needed. The

length of the feasible steps αP and αD for the affine-scaling direction are used to

predict the complementarity gap after such a step:

ga = (x + αP ∆ax)T (s + αD∆as). (3.7)

The ratio ga/x
T s ∈ (0, 1) measures the quality of the predictor direction. A

small ratio indicates a successful reduction of the complementarity gap. On the

other hand, if the ratio is close to one, then very little progress is achievable along

the direction ∆aw, and a bigger centering term is recommended.

In [65] the following choice of the new barrier parameter is suggested

( ga

xT s

)2 ga

n
=

( ga

xT s

)3 xT s

n
, (3.8)

corresponding to the choice of σ = (ga/x
T s)3 for the centering parameter. If the

predictor provides a good improvement, a small σ is chosen, and very little center-

ing will be used. When, on the other hand, the affine-scaling direction produces

very small stepsizes and very little improvement can be achieved, σ will be close

to one, and a stronger recentering will occur.

The centering parameter, could be chosen more generally as

σ =
( ga

xT s

)p

,

for various choices of the exponent p. Mehrotra [65] studied the effect of different

values p = 1, 2, 3, 4 on a subset of Netlib problems, and concluded that for p

between 2 and 4 there was not much difference. Also Lustig et al. [59] commented

on the weak dependence of the computational performance on the choice of the

exponent, and settled for the value p = 2.
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A further important contribution by Mehrotra is the introduction of a second-

order direction. As said above, the affine-scaling direction corresponds to a lin-

ear approximation to the the trajectory from the current point to the optimal

set, where no information about higher-order terms is taken into account. This

linearisation, however, produces an error which can be determined analytically.

Assuming that a full step in the affine-scaling direction is made, the new comple-

mentarity products are equal to

(X + ∆aX)(S + ∆aS)e = XSe + (S∆ax + X∆as) + ∆aX∆aSe = ∆aX∆aSe,

as the third equation in the Newton system (2.9) satisfies S∆ax+X∆as = −XSe.

The term ∆aX∆aSe corresponds to the error introduced by Newton’s method in

linearising the complementarity conditions of the kkt system (2.2).

Ideally, we would like the next iterate to be perfectly centered:

(X + ∆X)(S + ∆S)e = σµe,

which is equivalent to solving the nonlinear system

S∆x + X∆s = −XSe + σµe − ∆X∆Se. (3.9)

By comparing (3.9) and (2.9), we see that the linearisation error made by the

affine-scaling direction is exactly the ∆X∆Se term that is missing from the right-

hand side of the last equation of (2.9).

Mehrotra’s corrector term takes into account the linearisation error. Hence,

a second-order correction is computed by solving the Newton system (2.9) with

right-hand side

rc =




0
0

−∆aX∆aSe + σµe



 , (3.10)

for the direction ∆cw = (∆cx, ∆cy, ∆cs). Such a corrector direction combines the

centrality term σµe and the second-order term ∆aX∆aSe.

Once the predictor and corrector terms are computed, they are added together

to produce the composite predictor–corrector direction

∆Mw = ∆aw + ∆cw. (3.11)

Note that the affine-scaling predictor and Mehrotra’s corrector direction are

equally weighted in their contribution to the final search direction. This argu-

ment will be considered again in Chapter 4, where we study the use of a weighting

strategy for the corrector directions.
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The next iterate is given by

wk+1 = wk + (αP ∆Mxk, αD∆Myk, αD∆Msk)

where αP and αD are chosen according to (3.1) with respect to the direction ∆Mw

of (3.11).

Mehrotra’s algorithm exploits the Jacobian matrix employed in finding the

affine-scaling direction when calculating the corrector direction. Hence it reuses

the same Cholesky factors, which improves the computational efficiency. The cost

of a single iteration in the predictor–corrector method is only slightly larger than

that of the standard method because two backsolves per iteration have to be

executed, one for the predictor and one for the corrector.

We summarise Mehrotra’s predictor–corrector scheme in Algorithm 3.1.

Algorithm 3.1 Mehrotra’s predictor–corrector algorithm

Given: An initial iterate w0 such that (x0, s0) > 0;

Repeat:
Solve system (2.9) with right-hand side ra (3.6) for a predictor direction
∆aw.

Set µ according to (3.8) and find Mehrotra’s corrector direction ∆cw by
solving system (2.9) with right-hand side rc (3.10).

Evaluate the maximum feasible stepsize αk in ∆Mw = ∆aw + ∆cw.

Update the iterate wk+1 = wk + αk∆w.

Until The termination criteria (3.2) are met for some predetermined value of
p and q.

The practical advantage of Mehrotra’s predictor–corrector technique is that

it often produces longer stepsizes before violating the non-negativity constraints.

This usually translates into significant savings in the number of iterations: Mehro-

tra [65] reports on savings of the order of 35%-50% compared to other strategies.

For problems for which the factorisation cost is relevant, this leads into significant

savings in CPU time [59, 65]. Indeed, Mehrotra’s predictor–corrector technique is

advantageous in all interior point implementations for linear programming which

use direct methods to compute the Newton direction.

An insightful explanation of how Mehrotra’s second-order direction helps in

lengthening the step has been provided by Jarre and Wechs [48]. Consider one of

the equations that define the affine-scaling predictor direction:

si∆axi + xi∆asi = −xisi. (3.12)

As (xi, si) > 0, we can rewrite (3.12) as

∆axi

xi

+
∆asi

si

= −1. (3.13)
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We consider two possibilities: either ∆axi∆asi > 0 or ∆axi∆asi < 0. In the first

case, as the right-hand side of (3.13) is negative, it must be true that ∆axi < 0

and ∆asi < 0. From (3.13) we get the bounds

∆axi

xi

> −1 and
∆asi

si

> −1,

which imply

xi + ∆axi > 0 and si + ∆asi > 0,

that is, this is not a blocking component, as a step of full length can be taken.

In the second case, ∆axi∆asi < 0, let us assume that ∆axi > 0 and ∆asi < 0.

Considering again (3.13), we obtain the bound

∆asi

si

< −1,

so si + ∆asi < 0, and the stepsize must be damped in order to keep the iterate

positive. Therefore, this component may be a blocking component for the stepsize.

Consider now the equation for Mehrotra’s predictor–corrector direction

si∆cxi + xi∆csi = µ − xisi − ∆axi∆asi > −xisi,

where the inequality follows from the fact that µ−∆axi∆asi > 0, as ∆axi∆asi < 0.

Using (3.12) we obtain

si∆cxi + xi∆csi > si∆axi + xi∆asi,

which we can interpret as an increase in the weighted sum of the search directions.

Hence, it is possible that ∆csi > ∆asi, which would lead to an increase in the

stepsize if this was a blocking component in the affine-scaling direction.

As mentioned above, Mehrotra’s way of assessing the value of σ and the com-

putation of the second-order term is a heuristic procedure, thus there are no global

convergence results or polynomial complexity results. Tapia et al. [85] interpreted

the Newton step produced by Mehrotra’s predictor–corrector algorithm as a per-

turbed composite Newton method and gave results on the order of convergence.

They proved that a level-1 composite Newton method, when applied to the per-

turbed Karush-Kuhn-Tucker system, produces the same sequence of iterates as

Mehrotra’s predictor–corrector algorithm. While, in general, a level-m composite

Newton method has a Q-convergence rate of m + 2 [76], the same result does not

hold if the stepsize has to be damped to keep non-negativity of the iterates, as is

necessary in an interior-point setting. However, under the additional assumptions

of strict complementarity and nondegeneracy of the solution and feasibility of

the starting point, Mehrotra’s predictor–corrector method can be shown to have

Q-cubic convergence [85].
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3.3 Multiple centrality correctors

Mehrotra’s predictor–corrector, as it is implemented in optimization solvers [59,

65], is a very aggressive technique. It is based on the assumption, rarely satisfied,

that a full step in the corrected direction will be achievable. Moreover, an attempt

to correct all complementarity products to the same value µ is also very demand-

ing and occasionally counterproductive. Besides, practitioners noticed that this

technique may sometimes behave erratically, especially when used for a predic-

tor direction applied from highly infeasible and badly centered points. Finally,

Mehrotra’s corrector does not provide CPU time savings when used iteratively

[13].

Trying to provide a remedy to the above considerations, Gondzio [32] intro-

duced the multiple centrality correctors technique as an additional tool to comple-

ment those presented by Mehrotra. The idea behind this technique is to “force”

an increase in the length of the steps by correcting the centrality of Mehrotra’s

iterate. Instead of attempting to correct for the whole second-order error, multiple

centrality correctors concentrate on improving the complementarity pairs which

really seem to hinder the progress of the algorithm, that is, the complementarity

products that are far from the average.

In introducing the multiple centrality correctors technique, we assume that a

long-step path-following algorithm is used, and work with the symmetric neigh-

bourhood Ns(γ) of the central path as defined in Section 2.3. In the framework

of multiple centrality correctors, we look for a centrality corrector ∆mw for which

larger steps are allowed in the composite direction ∆w = ∆pw + ∆mw. In this

context, Mehrotra’s predictor–corrector direction (3.11) is considered to be a new

predictor direction ∆pw to which one or more centrality correctors can be applied.

In this sense, multiple centrality correctors can be interpreted as higher-order cor-

rector terms. Different choices for the first predictor direction are also possible

and, in certain special circumstances, such as warm-starting, may be justified.

Assume that a predictor direction ∆pw is given and the corresponding feasible

stepsizes αP and αD in the primal and dual spaces are determined. We want to

enlarge the stepsizes to

α̃P = min(αP +δ, 1) and α̃D = min(αD+δ, 1),

for some fixed aspiration level δ ∈ (0, 1). We compute a trial point

x̃ = x + α̃P ∆px, s̃ = s + α̃D∆ps, (3.14)

and the corresponding complementarity products ṽ = X̃S̃e ∈ R
n. It is worth

noting that since we increased the stepsizes from αP , αD to α̃P , α̃D, the trial point
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(3.14) is infeasible. However, as the trial point is used exclusively in determining

a target for the centrality corrector, we will not worry about it.

The products in ṽ are very unlikely all to be equal to µ. Some of them are

significantly smaller than µ, including cases of negative components in ṽ, and

some exceed µ. Instead of trying to correct all of them to the same value µ, we

correct only those that lie outwith the symmetric neighbourhood of the central

path. As the symmetric neighbourhood (2.15) provides a lower and an upper

bound on each complementarity product, this means checking where each ṽi lies

with respect to both of them.

Namely, we try to move small products (ṽi ≤ γµ) to the lower bound γµ,

and move large products (ṽi ≥ γ−1µ) to the upper bound γ−1µ, where γ ∈ (0, 1)

is the neighbourhood parameter. Complementarity products which satisfy γµ ≤
ṽi ≤ γ−1µ are already within the bounds of the symmetric neighbourhood and

thus reasonably close to their target values: therefore they do not need to be

changed. In other words, we attempt to move the iterate inside the symmetric

neighbourhood Ns(γ) of the central path.

The corrector term ∆mw is computed by solving the usual system of equations

(2.9) for a special right-hand side

rm =




0
0
t



 , (3.15)

where the target t is defined as follows:

ti =






γµ − ṽi if ṽi ≤ γµ
1
γ
µ − ṽi if ṽi ≥ 1

γ
µ

0 otherwise.

(3.16)

We stress that the target point is not on the central path, but in the symmet-

ric neighbourhood and that not all complementary products are corrected. This

makes the target (3.16) an achievable one.

One important feature of the multiple centrality correctors technique is that

it can be applied recursively to the direction ∆pw := ∆pw+∆mw. The maximum

number of centrality correctors allowed is problem dependent. Such a number is

determined heuristically, trying to balance the cost of additional backsolves to

the savings in iteration count, as detailed in [32]. Each corrector computed is

accepted as long as the stepsizes increase at least by a fraction of the aspiration

level δ.

In Algorithm 3.2 we summarise the steps of the multiple centrality correctors

technique.
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Algorithm 3.2 Multiple centrality correctors

Given: An iterate wk, a search direction ∆pw, and the maximum number l of
correctors allowed;

Repeat:
Solve system (2.9) with right-hand side rm (3.15), for a centrality cor-
rector direction ∆mw.

Set ∆pw := ∆pw + ∆mw.

Evaluate the maximum stepsize αk in direction ∆pw.

Until The stepsize does not increase by at least a fraction of the aspiration
level δ or the number of correctors reaches l.

Update the iterate wk+1 = wk + αk∆pw.

The computational experience presented in [32] showed that this strategy is

effective, as the stepsizes in the primal and dual spaces computed for the compos-

ite direction are larger than those corresponding to the predictor direction. This

leads to reductions in the number of iterations, which in turn translate into CPU

time savings which increase with the factorisation cost.

Virtually all existing interior point codes implement the multiple centrality

correctors technique [90, Appendix B]. Their use depends on the quality of the

linear algebra implementation, particularly with respect to the Cholesky factori-

sation routines, as this affects the ratio between factorisation and backsolve costs.

We will present further improvements in the way corrector directions can be

computed in Chapter 4.

3.4 Warm-start with interior point methods

As discussed in Section 3.1.1, the problem of finding a starting point is usually

solved by using Mehrotra’s starting point heuristic [65], which is considered to be

computationally effective for generic problems.

However, many practical applications rely on solving a sequence of closely

related problems, where the problem instances differ from each other by some

perturbation. This happens within algorithms that are sequential in their nature,

such as sequential linear programming or sequential quadratic programming. It

is also very common in (mixed) integer programming, when the problems are

solved by relaxing the integrality constraints and introducing some branching

strategy, such as in branch-and-bound, branch-and-cut, branch-and-price. Sim-

ilarly, sequential problems appear in the context of solution methods based on

cutting planes.

In these situations, we expect the solution of one instance of a problem to
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be close to the solution of the next one, in the sense that some of the informa-

tion gathered in the solution process may still be valid. Therefore, starting the

optimization of a problem from the solution of the previous one should reduce

the computational effort of solving the perturbed instance. The strategies that

exploit an advanced starting point are called warm-start strategies.

Warm-start techniques are very successful when implemented with a simplex

solver (see, for example, [12]). The main reason for this is that, as the solution of a

problem is a vertex, it is an ideal starting point for a perturbed problem instance.

If the perturbation is not too big, then optimality can be recovered very quickly.

In the context of interior point methods, it is much more difficult to implement

a warm-start strategy in a successful way, for the reasons we outline below.

The optimal solution of a linear programming problem found with a path-

following interior point method is very close to a vertex of the feasible polytope

or, in the common case of multiple solutions, corresponds to the analytic center

of the optimal set of solutions. When the polytope changes (due, for example, to

the addition of cutting planes or other changes in the problem data), the optimal

solution changes as well. In such a case the previously optimal solution may now

be very far from the central path of the perturbed problem (see Figure 3.1).

Figure 3.1: Effect of a perturbation on the central path.

As presented in Chapter 2, interior point methods approach the solution to

the kkt system of optimality conditions by relaxing the complementarity require-

ments and obtaining the perturbed system (2.4). As moving towards a vertex can

be interpreted as making a decision on the optimal partition, considering the sys-

tem (2.4) is equivalent to postponing the choice of the optimal partition. If the

vertex is not an optimal one, then the central path will not approach it.

The effectiveness of an interior point algorithm degrades when an iterate gets

too close to a boundary before optimality is reached, or, equivalently, when the

iterate gets far from the central path. In these situations the algorithm may spend

many iterations in recovering centrality, during which small steps are usually
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generated and thus very slow progress is achieved (see Figure 3.2).

Figure 3.2: Typical behaviour of an interior point method if warm-started from
the previously optimal solution.

Hipolito [44] considered the issue of robustness of search directions in inte-

rior point methods in these situations. In his analysis, Hipolito showed that if

the iterate is close to a boundary, the affine-scaling direction may be parallel to

the nearby constraints. In such cases, the corrector direction may also display the

same behaviour, and short stepsizes are obtained for the resulting combined search

direction. The analysis in [44] concerns the dual affine-scaling algorithm, but it

also seems to provide an interesting insight into the misbehaviour of search direc-

tions used in primal–dual algorithms when computed from non-central points.

The required features of a good warm-start candidate for an interior point

algorithm are somewhat contradictory. The point should not be too close to the

boundary of the feasible region in order to be able to absorb larger perturbations

in the problem data. Also, it should be sufficiently advanced to provide compu-

tational savings over a cold-start iterate. These considerations lead to the idea of

storing an approximate µ-center well before reaching optimality [33, 34, 39, 94].

The theory and practice of warm-start techniques for interior point methods

is a relatively new and still open field of study. In the remainder of this section we

present a review of some of the warm-start approaches proposed in the interior

point literature.

3.4.1 Literature review

Mitchell [67] and Mitchell and Todd [70] analyse the potential reduction interior

point method within a cutting plane algorithm. They exploit the fact that a

primal feasible point can be constructed after a set of new columns is added to

the problem. They use this strategy with success in a column generation scheme

and more generally in the solution of combinatorial optimization problems.
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The role of interior point methods in integer and combinatorial optimization

has been comprehensively surveyed in [68] and [69]. This is relevant as these

classes of optimization problems are generally solved by formulating a sequence

of linear relaxations, where the problem instances differ by the addition of cutting

planes and facet-inducing constraints.

Hipolito [44] studies an alternative centering direction in the context of the

dual affine-scaling algorithm. Such a direction is designed to move the iterate away

from the boundary, overcoming the risk of moving parallel to it that was men-

tioned earlier in this section. By considering a weighted least squares formulation,

Hipolito develops the dual affine-scaling and the corresponding Newton centering

directions. This study has an immediate interest for warm-starting approaches,

as the resulting direction points towards the interior of the feasible region, thus

providing the algorithm with the necessary space to make fast progress. Unfortu-

nately, it is developed only for the dual affine-scaling algorithm, and to the best

of our knowledge there have been no studies on how to obtain a similar search

direction in the primal–dual context.

Gondzio [33] presents a warm-start procedure for primal–dual interior point

methods in the context of a cutting plane method. The interior point method

is used to solve a sequence of restricted master problems, which differ by one or

more cutting planes. By construction, in such a setting the solution to one problem

deeply violates some of the newly added constraints. The optimal solution to a

problem is necessarily very close to the boundary, thus is an unattractive starting

point for a perturbed problem, and an alternative warm-start iterate needs to be

defined. The idea proposed in [33] is to store a nearly optimal point (3–4 digits

of accuracy) to be employed as a warm-start point. Because of the cutting plane

setting, the problem is then solved to optimality (7–8 digits of accuracy) in order

to generate appropriate cuts. As one requirement for a good iterate is centrality,

it is of interest to perform a few centering steps on the stored iterate, the cost of

which is marginal, as a factorisation is already available. The recentering steps

proposed are based on centrality correctors [32]. An auxiliary feasibility recovery

procedure may be needed as, due to the addition of cuts, large infeasibilities are

often produced.

The warm-start approach proposed in [33] is extended in [39] to the case of

solving a sequence of problems with the same dimensions but changing problem

data (the objective function or the right-hand side). Such situations arise in the

context of decomposition approaches for large structured linear programs. In the

case of Dantzig–Wolfe decomposition, successive subproblems differ only in the

objective function, while in the case of Benders decomposition they differ only in
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the right-hand sides. Following [33], nearly optimal points are saved and used to

warm-start the solution of subsequent subproblems [39].

Yıldırım and Wright [94] consider again the case of solving a sequence of

problems in fixed dimensions, and analyse the number of iterations required to

converge to a solution of the perturbed problem instance from the warm-start

point. They obtain worst-case estimates and show that these estimates depend

on the size of the perturbation as well as on the conditioning of the problem

instances. Thus they obtain conditions under which the complexity of the warm-

start approach is better than in the cold-start case.

The strategy proposed in [94] aims to absorb the primal and dual infeasibilities

introduced by the perturbation in just one step. This strategy requires backtrack-

ing to an iterate for which µ is large enough to allow a full step for the correction

direction they produce. The amount of necessary backtracking depends on the

magnitude of the perturbation (as measured by the change in the problem data).

This is intuitively justified by considering that a large perturbation will produce

a large adjustment. It is also essential to guarantee that a full step will not com-

promise the positivity requirements of the iterate. To ensure the availability of an

approximate µ-center from which the perturbation can be absorbed in one step,

a subset of iterates for different values of µ is stored. When the size of the pertur-

bation becomes known, the smallest µ that allows to absorb the perturbation is

retrieved, and the corresponding iterate is used as a warm-start point for the next

problem in the sequence. In [94], two different corrections for the perturbation

are studied; one is based on least squares, the other on a Newton step correction.

A detailed computational comparison of these strategies has been carried out by

John and Yıldırım [49].

Gondzio and Grothey [34] propose a different reoptimization technique for

interior point methods. As in [94], they aim at obtaining conditions for perturba-

tions that can be absorbed in one Newton step. However, they measure perturba-

tions by a relative measure of implied primal and dual infeasibilities, and analyse

recovery steps in the primal and the dual spaces independently.

This reoptimization procedure is based on two phases. First, an attempt is

made to absorb the infeasibilities caused by the perturbation with a full Newton

step; second, the centrality of the iterate is improved. A key feature of Gondzio and

Grothey’s approach [34] is that the primal search direction is governed only by the

primal perturbation, and the dual search direction only by the dual perturbation.

This corresponds to splitting the search direction into two terms, ∆1w and ∆2w,
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and solving two independent Newton systems




A 0 0
0 AT I
S 0 X








∆1x
∆1y
∆1s



 =




ξb

0
0



 ,




A 0 0
0 AT I
S 0 X








∆2x
∆2y
∆2s



 =




0
ξc

0



 .

They produce bounds on the magnitude of primal residual ξb and dual residual

ξc that can be absorbed in a single Newton step. Unlike to the results of [94],

the bounds of [34] are easy to compute and thus can be used in practice. If the

residuals at the warm-start point do not satisfy these bounds, a different iterate

further away from optimality may be more likely to allow for a full Newton step.

A practical implementation is developed within an infeasible interior point

method. In this context, a stronger emphasis may be put on reducing the infea-

sibilities. This is accomplished with additional centering steps. An approximate

µ-center is stored for a tolerance level that depends on the magnitude of the ex-

pected perturbation. This does not exclude the possibility of storing a sequence

of iterates, as proposed in [94], thus postponing the choice of the one to use. As

the problem size does not change, an approximate µ-center can immediately be

used as an iterate for the next problem. If only one iterate is stored, then the

absorption of infeasibilities may be spread across a few iterations whenever the

stepsizes fall below a predefined level. As this strategy does not make assump-

tions upon the centrality of the warm-start iterate, it can be initialised with any

iterate. Gondzio and Grothey [34] apply this warm-start strategy successfully to

structured problems for crash-start points that come from a cross-decomposition

scheme, and thus may lack centrality.

A different approach has been studied by Benson and Shanno [6]. They inves-

tigate how to improve the efficiency of interior point methods in a reoptimization

context by the use of a primal–dual penalty approach. While standard penalty

techniques are applied only in one space, the introduction of penalty parameters

in both the primal and the dual problems allows the handling of perturbations in

both spaces. For example, an l1 penalty can deal with changes in the right-hand

side of the constraints (primal changes), but has virtually no effect on perturba-

tions of the objective coefficients (dual changes).

Benson and Shanno’s strategy relaxes the non-negativity constraints for the

decision variables, penalising the violation in the objective, for both the primal

and dual problems. The penalised problem allows the variables to become nega-

tive, which provides more freedom of movement for the variables, with the imme-

diate advantage of allowing larger stepsizes along the computed search direction

to be accepted. This favours faster progress especially in the first few iterations,

when the perturbation needs to be absorbed. Benson and Shanno [6] also provide
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some computational evidence of the effectiveness of their strategy.

We will introduce a novel warm-start technique tailored to stochastic linear

programming in Chapter 5.
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Chapter 4

Weighted corrector directions.

In this chapter we first discuss subspace searches as a way to determine search

directions for interior point methods for linear programming. Then we illustrate

the theoretical understanding of the cases of failure of Mehrotra’s corrector di-

rection, drawing particularly from [14, 15], and we introduce a computationally

competitive way to improve the performance of multiple centrality correctors.

We present the implementation of such a strategy in the hopdm solver, along

with extensive computational experience. The original content of this chapter has

already appeared in [18], co-authored with Jacek Gondzio.

4.1 Subspace searches

Subspace searches are a strategy for generating search directions. They are usu-

ally derived differently than the Newton system, and are built according to some

criteria that are believed to summarise the essential characteristics of a good

search direction. In this section we discuss two subspace-search approaches. The

first, by Jarre and Wechs [48], generates directions by a recursion on a modifica-

tion of Mehrotra’s corrector. The second, the approach of Mehrotra and Li [66],

considers search directions produced through Krylov subspace basis.

4.1.1 Jarre and Wechs’s directions

Jarre and Wechs [48] present an implementable technique for generating efficient

higher-order search directions in a primal–dual interior-point framework. They

start by considering the Newton system (2.9). While it is clear what to consider

as right-hand side for primal and dual feasibility constraints (the residual at the

current point), the complementarity component leaves more freedom in choosing

a target t. They argue that there exists an optimal choice for which the corre-

sponding Newton system would immediately produce the optimizer. Given the
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system 


A 0 0
0 AT I
S 0 X








∆x
∆y
∆s



 =




b − Ax

c − AT y − s
t



 , (4.1)

they ask what choice of t in the right-hand side would produce a good search

direction.

If w is the current iterate and w∗ is an optimal primal–dual solution to problem

(2.1), then ∆w∗ = w∗ − w satisfies the system (4.1) for the choice

t∗ = S(x∗ − x) + X(s∗ − s) = S∆x∗ + X∆s∗. (4.2)

It is possible to write t∗ as a different expression. Given that X∗S∗e = 0, we have:

0 = (X + ∆X∗)(S + ∆S∗)e = XSe + X∆s∗ + S∆x∗ + ∆X∗∆S∗e,

from which, using (4.2), we obtain t∗ = −XSe − ∆X∗∆S∗e. Therefore, as t∗

would lead to the optimizer in one single iteration, it can be considered the

optimal choice for the target t in (4.1).

Clearly, as we do not know what the solution will be, when system (4.1) is

set up, we have no knowledge of t∗. However, some bounds can be determined.

Knowing that x + ∆x∗ ≥ 0 and s + ∆s∗ ≥ 0, we have ∆x∗ ≥ −x and ∆s∗ ≥ −s,

from which we obtain the lower bound

t∗ = S∆x∗ + X∆s∗ ≥ −2XSe.

An upper bound is derived from a result by Vavasis and Ye [88, Lemma 16],

which states that for two strictly feasible points, w and ŵ, exactly on the central

path and µ > µ̂ > 0 we have

six̂i + xiŝi ≤ nxisi, i = 1, . . . , n,

which can be written in vector terms as

SX̂e + XŜe ≤ nXSe. (4.3)

Therefore, thanks to (4.3) we can rewrite (4.2) and derive the following upper

bound:

t∗ = S(x∗ − x) + X(s∗ − s) = SX∗e + XS∗e − 2XSe ≤ (n − 2)XSe.

In general, it is not obvious how to find a good t. Jarre and Wechs [48] pro-

pose searching a subspace spanned by k different directions, ∆w1, ∆w2, . . . , ∆wk,

generated from some affinely independent targets t1, t2, . . . , tk. As the quality of a
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search direction can be measured by the length of the stepsize and the reduction

in the complementarity gap, they aim to find the combination

∆w(ρ) = ρ1∆w1 + ρ2∆w2 + . . . + ρk∆wk (4.4)

that maximizes these measures. To generate directions they consider how to use

Mehrotra’s corrector in an iterative fashion, and notice that a straightforward

recursion of the type

A∆xj = b − Ax

AT ∆yj + ∆sj = c − AT y − s

X∆sj + S∆xj = µe − XSe − ∆Xj−1∆Sj−1e

is usually divergent for general positive starting points. Therefore, they intro-

duce a rescaling of Mehrotra’s corrector and other strategies to guarantee good

convergence properties.

In order to find the best combination of weights in the direction (4.4), Jarre

and Wechs [48] formulate a small linear subproblem that can be solved approxi-

mately. The solution of this subproblem produces a search direction ∆w(ρ) that

is generally better than Mehrotra’s predictor–corrector direction, as it takes into

account and carefully weighs some additional higher-order directions.

4.1.2 Krylov subspace searches

Mehrotra and Li [66] propose a different scheme in which a collection of linearly

independent directions is combined through a small linear subproblem. Following

the approach of Jarre and Wechs [48] presented above, they express the require-

ments for a good search direction as a linear program. In particular, they impose

conditions aimed at ensuring global convergence of the algorithm when using

generic search directions.

The directions considered in the subspace search can include all sorts of lin-

early independent directions: the affine-scaling direction, Mehrotra’s corrector,

multiple centrality correctors, Jarre–Wechs directions. In their approach, Mehro-

tra and Li [66] consider generating directions using a Krylov subspace mechanism.

This new approach for generating corrector directions uses an exact factorisa-

tion from an earlier iteration to generate directions via Krylov subspaces. When

generating correctors through Krylov subspaces, the directions have to satisfy

the primal–dual feasibility constraints, but not the complementarity constraints.

Therefore, any convex combination of these directions will still satisfy the feasibil-

ity requirements. This gives the additional freedom of choosing the combination
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that satisfies the complementarity conditions in the best possible way. However,

Mehrotra and Li [66] do not require the linear combination to be convex.

At the k-th iteration of an interior point method we have to solve the Newton

system (2.9). We rewrite it in the following terms

Jk∆kw = ξk,

where Jk = ∇F (wk) is the Jacobian matrix for system (2.8) evaluated at the

current iterate wk, and ξk is the corresponding right-hand side. The direction

∆kw is used to compute a trial point:

x̃ = xk + αP ∆kx, ỹ = yk + αD∆ky, s̃ = sk + αD∆ks,

with stepsizes αP and αD computed according to (3.1). At the trial point w̃, a

usual interior point method would have to solve the system J̃∆w = ξ̃ in order to

find the next search direction. Instead, Mehrotra and Li [66] generate a Krylov

subspace for J̃∆w = ξ̃.

The Krylov subspace of dimension j is defined as

Kj(Jk, J̃ , ξ̃) = span{ξJ , GξJ , G2ξJ , . . . , Gj−1ξJ},

where ξJ = J−1
k ξ̃, and G = I − J−1

k J̃ . Note that to improve the conditioning

in this space the term J̃ is preconditioned with Jk, the factors of which have

already been found. The subspace Kj(Jk, J̃ , ξ̃) thus generated contains j linearly

independent directions.

At most n linearly independent Krylov directions can be computed. However,

for reasons of computational efficiency, not all of them are actually generated.

Instead, a small number of search directions are considered, so that the linear

subproblem is of small dimensions.

In the algorithm of [66], the affine-scaling direction, ∆aw, Mehrotra’s correc-

tor, ∆cw, and the first j directions, ∆1w, ∆2w, . . . , ∆jw, from Kj(Jk, J̃ , ξ̃) are

combined with appropriate weights ρ:

∆(ρ)w = ρa∆aw + ρc∆cw +

j∑

i=1

ρi∆iw.

In some cases, a pure recentering direction, ∆µw, may also be considered in

∆(ρ)w, with appropriate weight ρµ.

The choice of the best set of weights ρ in the combined search direction is

obtained by solving an auxiliary linear programming subproblem. The subproblem

maximizes the rate of decrease in the duality gap whilst satisfying a series of

requirements: non-negativity of the new iterate, upper bounds on the magnitude
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of the search direction, upper bounds on infeasibilities, decrease in the average

complementarity gap, and closeness to the central path. Both the theoretical

formulation and the practical implementation allow for the independent choice of

weights ρ for the primal and dual spaces, which is often a desirable property for

practical algorithms.

The computation of Krylov subspace directions in Mehrotra and Li’s approach

involves considerable computational cost, as the computation of each Krylov di-

rection requires a backsolve operation. This can be seen from the definition of the

power basis matrix

G = I − J−1
k J̃ ,

which involves an inverse matrix. In fact, if we take u to be the starting vector

in the Krylov sequence, the computation of the vector J−1
k J̃u requires us to first

compute v = J̃u (matrix–vector multiplication) and then to determine t = J−1
k v

(backsolve on the Cholesky factors).

Mehrotra and Li [66] present extensive computational experience for their

strategy, showing that the use of up to four Krylov subspace directions embedded

in a small linear program results in an algorithm with very good performance.

We will discuss these results in more details in Section 4.4, where we compare

them with the weighted correctors strategy of Section 4.3.

4.2 Failures of Mehrotra’s corrector

As presented in Section 2.2, Newton’s method employed in a primal–dual path-

following algorithm provides a first-order approximation of the central path, in

which the nonlinear perturbed kkt system (2.4) is linearised around the cur-

rent primal–dual point wk. Consistently with the standard analysis of Newton’s

method [29], this linear approximation is valid locally, in a neighbourhood of

the point where it is computed. Depending on the specific characteristics of the

point, such an approximation may not be a good direction if used outside this

neighbourhood.

Mehrotra’s algorithm, which we examined in Section 3.2, adds a second-order

correction to the search direction in order to construct a quadratic approxima-

tion of the central path. This technique is at the basis of all implementations of

interior point methods for linear programming, and the practical superiority of a

second-order algorithm over a first-order one is broadly recognised. However, it

is important to remember that the central path is a highly nonlinear curve that,

according to Vavasis and Ye [88], is composed by O(n2) turns of a high degree

and segments in which it is approximately straight. Given the complexity of this
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curve, it is unrealistic to be able to approximate it everywhere with a second-order

curve.

Upon discussing the choice for the centering term in his algorithm, Mehrotra

[65] makes this comment:

“It is not clear if the central path [. . . ] is the best path to follow, par-
ticularly since it is affected by the presence of redundant constraints.
Furthermore, the points on (or near) the central path are only in-
termediate to solving the linear programming problem. It is only the
limit point on this path that is of interest to us.”

This statement represents a very pragmatic viewpoint of the interior point algo-

rithm. It stresses the fact that while the central path is the reference trajectory

for approaching the optimal set, in practice we should not worry too much if the

algorithm strays from it. Also it raises a warning about trusting the concept of an-

alytic center too much, as it can easily be distorted by the presence of redundant

constraints, as discussed in Section 2.1.1.

4.2.1 The implementation viewpoint

In practical implementations, it is sometimes observed that Mehrotra’s corrector

produces a shorter stepsize than the one obtained by the predictor direction. This

can be considered to be a failure of the corrector, as it does not improve the quality

of the predictor direction, as measured by the length of the achievable step. In

such situations, a solver may decide to reject Mehrotra’s corrector and only use

some multiple centrality correctors. As these generally construct less demanding

target points, in which only the complementarity products that lie outwith the

symmetric neighbourhood are corrected, the chances of them being rejected are

smaller. However, if these do not help either, the search direction may be reduced

to the affine-scaling predictor direction alone. Undoubtedly such an occurrence

has a dramatic impact on the efficiency of the solver, as a lot of CPU time is

fruitlessly consumed in trying to find some correction to the predictor direction.

If the step from the current point is too short, the new iterate may still lie in a

troublesome area of the solution space, and the same situation may arise again

in the following iteration.

In Table 4.1 we provide some evidence gathered on the collection of Netlib and

Kennington problems by running hopdm 2.13 [31]. The table lists the problems

in which Mehrotra’s corrector is rejected. hopdm’s strategy can be summarised

in the following steps. First both the predictor and the corrector direction are

computed according to Mehrotra’s algorithm (see Algorithm 3.1). If the step in

the composite direction ∆Mw is shorter than what would be achieved in the

56



predictor ∆aw, a warning is raised (reported in the first column of Table 4.1).

At this point some multiple centrality correctors ∆mw are computed: if they do

not improve on the stepsize, a second warning is raised (reported in the second

column of Table 4.1), and the algorithm moves along the affine-scaling direction

∆aw alone.

Problem ∆c failed ∆m failed
cre-a 2 1
cre-b 1 1
degen3 1 1
dfl001 12 10
ganges 1 1
greenbea 9 3

Problem ∆c failed ∆m failed
ken-13 1 0
maros 1 0
modszk1 2 1
osa-07 1 0
pds-10 1 0
shell 1 0

Table 4.1: Number of times Mehrotra’s corrector ∆c and multiple centrality cor-
rectors ∆m were rejected in hopdm.

As we can see from Table 4.1, in the hopdm implementation Mehrotra’s cor-

rector is rejected only in 12 problems. Two problems appear particularly trou-

blesome: dfl001 and greenbea. In 15 iterations, multiple centrality correctors

provide a successful correction to the predictor direction; however, in 18 cases

(10 of which are in problem dfl001) the search direction was the affine-scaling

predictor alone.

4.2.2 Theoretical insight

The issue of failures of Mehrotra’s corrector has recently been analysed by Car-

tis [14], who provided an example in which the second-order corrector does not

behave well. We report it here and make some observations.

Example 4.1 (Cartis [14]). Consider the following primal–dual pair:

min x1 + 8x2 max 2y
s.t. x2 + x3 = 2, s.t. s1 = 1, y + s2 = 8, y + s3 = 0,

x ≥ 0; s ≥ 0,

and the starting point:

x0 = (8, 1.95, 0.05), y0 = −0.1, s0 = (1, 8.1, 0.1).

The solution is:

x∗ = (0, 0, 2), y∗ = 0, s∗ = (1, 8, 0).

The first observation we make about the starting point concerns centrality.

The vector of complementary pairs and the average complementarity gap are

X0S0e =




8

15.795
0.005



 , µ0 = 7.933.
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There is a big spread among the complementarity products: while the first is

almost centered, the second is about twice the average, and the third is very close

to zero. The ratio (2.14) between the smallest and the largest pair is

̺(X0S0e) ≈ 3 × 10−4.

Studying this starting point in terms of a symmetric neighbourhood, we can

see that the pair x0
2s

0
2 ∈ Ns(0.5), but this neighbourhood does not accommodate

x0
3s

0
3. In fact, this pair belongs to the much larger neighbourhood Ns(0.0006).

Cartis’s analysis is based on a feasible primal–dual corrector algorithm (pdc)

which combines a standard primal–dual path-following method with a second-

order correction. In this algorithm, the predictor direction is computed according

to (2.9) for some centering parameter σ ∈ (0, 1), and the corrector solves (2.9)

this time with right-hand side




0
0

−∆aX∆aSe



 .

The pdc algorithm is not exactly the same as Mehrotra’s predictor–corrector

algorithm, but its aims are very similar and it is more amenable to theoretical

analysis.

Cartis’s example [14] shows that for certain starting points the corrector direc-

tion, ∆cw, is always orders of magnitude larger than the predictor ∆aw, in both

the primal and dual spaces. In these cases, while the predictor points towards the

optimum, the second-order corrector points away from it. As the final direction

is given by

∆w = ∆aw + ∆cw,

the combined direction is influenced almost exclusively by the corrector, and

therefore it is not accurate. The stepsizes generated by moving along the direction

∆w are extremely short.

The solution outlined by Cartis in [14], and then further developed in [15], is to

reduce the influence exerted by the corrector by weighting it by the square of the

stepsize. Besides ensuring that the corrector is really considered a second-order

term as in a rigorous Taylor expansion, this proposal allows for better convergence

results.

An implementable solution to these problems will be the major focus of the

next section.
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4.3 Weighting the corrector directions

The discussion of the previous section clarifies the fact that using a full weight

for a corrector direction may not always be desirable. The theoretical findings

outlined above give rise to the following generalisation

∆ω
Mw = ∆aw + ω∆cw,

where we weight the corrector by a parameter ω ∈ (0, 1] independent of the

stepsize α.

We choose the weight independently at each iteration in order to maximize

the stepsize in the weighted composite direction ∆ω
Mw. This gives us the freedom

to find the optimal weight ω̂ in the interval (0, 1]. This generalisation allows for

the possibility of using Mehrotra’s corrector with a small weight, if that helps in

producing a better stepsize; on the other hand, the choice ω̂ = 1 yields the full

Mehrotra corrector of the standard implementations.

We apply the weighting strategy to multiple centrality correctors as well. As

discussed in Section 3.3, a trial point in the multiple centrality correctors tech-

nique depends on the aspiration level δ which measures the greediness of the

centrality corrector. In the existing implementations, this parameter is fixed at

coding time to a value determined after tuning to a series of representative test

problems. However, for a specific problem such a value may be too conservative

or too demanding; moreover, the same value may not be optimal throughout the

solution of the same problem. Hence, it makes sense to provide a mechanism that

changes these correctors in an adaptive way in order to increase their effectiveness.

We propose to generate a sequence of multiple centrality correctors, and for

each of them we choose the optimal weight ω̂ that maximizes the stepsizes in

primal and dual spaces for the composite direction

∆ω
mw = ∆pw + ω∆mw.

Direction ∆pw+ω̂∆mw becomes a predictor ∆pw for the next centrality corrector.

The correcting process is iterative, and can be interrupted at any stage.

It is worthwhile noting that eventually, after adding k corrector terms, the

directions used in the weighted correctors approach have form

∆w = ∆aw + ω1∆1w + . . . + ωk∆kw,

and the affine-scaling term ∆aw contributes to it without any reduction. Hence,

the larger the stepsize, the more progress we make towards the optimizer.

We formalise the weighted correctors strategy in Algorithm 4.1.
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Algorithm 4.1 Weighted correctors algorithm

Given: An initial iterate w0 such that (x0, s0) > 0;

Repeat:
Solve system (2.9) with right-hand side ra (3.6) for the affine-scaling
predictor direction ∆aw.

Set µ according to (3.8) and find Mehrotra’s corrector direction ∆cw by
solving system (2.9) with right-hand side rc (3.10).

Do a linesearch to find the optimal ω̂ that maximizes the stepsize α in
∆ω

Mw = ∆aw + ω∆cw

Set ∆pw := ∆aw + ω̂∆cw.

while the stepsize increases by at least a fraction of the aspiration level
δ do

Solve system (2.9) with right-hand side rm (3.15), for a centrality
corrector direction ∆mw.

Perform a linesearch to find the optimal ω̂ that maximizes the
stepsize α in ∆ω

mw = ∆pw + ω∆mw.

Set ∆pw := ∆pw + ω̂∆mw.

end while
Update the iterate wk+1 = wk + αk∆pw.

Until The termination criteria (3.2) are met for some predetermined value of
p and q.

In the choice of ω we restrict our attention to the interval

[ωmin, ωmax] = [αP αD, 1].

There are two reasons for using ωmin = αP αD. First, using the stepsizes αP and

αD for the predictor direction gives

(X + αP ∆X)(S + αD∆S)e = XSe + αP S∆Xe + αDX∆Se + αP αD∆X∆Se,

and the term αP αD appears with the second-order error. Secondly, the study of

Cartis [14] suggests squaring the stepsize for the corrector. Our computational

experience indicates that the use of ω = ωmin = αP αD is too conservative. Still,

as can be seen from Figure 4.1, such ωmin is a reliable lower bound for attractive

weights ω.

The ultimate objective in choosing ω is to increase the current stepsizes αP

and αD. These stepsizes depend on ω in a complex way. Examples corresponding

to a common behaviour are given in Figure 4.2, where we show how the product

αω
P αω

D varies depending on the choice of ω for Mehrotra’s corrector at two different

iterations of problem capri of the Netlib collection. On the left, ω ∈ [0.4, 1] and

ω̂ = 0.475 gives a product αω̂
P αω̂

D = 0.583, better than a value of 0.477 that would
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Figure 4.1: Relationship between ωmin = αP αD (dashed) and ω̂ (solid) through
the iterations of four different problems.

have been obtained by using a full weight on Mehrotra’s corrector. On the right,

ω ∈ [0.178, 1] and the choice of ω ∈ (0.6, 0.7) leads to the best product αω̂
P αω̂

D of

about 0.375.
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Figure 4.2: Plot of αω
P αω

D for 9 values of ω ∈ [αP αD, 1] in two iterations of problem
capri.

4.4 Numerical results

We have implemented our proposal within the hopdm interior point solver [31],

and tested it in a series of computational experiments, using test problems from
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different collections. As a comparison, we present the results obtained by pcx

[20], a reference implementation of interior point methods. The two implementa-

tions, pcx and hopdm, have different termination criteria in their default con-

figurations. For the purpose of consistency, in the results shown, we decided to

implement in hopdm the criteria used by pcx. Therefore, for all solvers optimal

termination occurs when the conditions (3.3) are met, with feasibility accuracy

p = 8 and complementarity accuracy q = 10.

We use γ = 0.1 in the definition of the symmetric neighbourhood and define

aspiration levels for the stepsizes using the rule

α̃P = min(1.5αP +0.3, 1) and α̃D = min(1.5αD+0.3, 1).

The values suggested in [32] were more conservative: α̃ = min(α+0.1, 1). Thanks

to the weighting mechanism we can control the contribution of the corrector in an

adaptive way, and thus be more demanding in our definition of aspired stepsizes.

Centrality correctors are accepted in the primal and/or dual space if αnew
P ≥

1.01αP and/or αnew
D ≥ 1.01αD, respectively. Note that this is different from what

is described in [32], where a corrector is accepted if αnew ≥ α + 0.1δ, for an

aspiration level δ = 0.1.

We implemented a simple linesearch procedure to locate ω̂. We choose 9 points

uniformly spaced in the interval [αP αD, 1] and evaluate, for each of these points,

the stepsizes αω
P and αω

D in both spaces. When a larger stepsize αω
P or αω

D is

obtained, the corresponding ω is stored as ωP or ωD respectively. Hence, in our

implementation we allow different weightings for directions in the primal and dual

spaces.

We present our results in terms of number of iterations and number of back-

solve operations. The rationale behind this decision is that the multiple centrality

correctors technique determines the number of allowed correctors on the basis of

the ratio between factorisation cost and backsolve cost. This ratio can be very

different across implementations, and is mainly influenced by the linear algebra

routines used. hopdm comes with an in-house linear algebra implementation,

while pcx relies on the more sophisticated sparse Cholesky solver of Ng and Pey-

ton. Therefore, the pcx code tends to use less correctors per iteration. In all other

respects, the correction scheme closely follows the one of hopdm and the paper

[32].

4.4.1 Comparison with Mehrotra and Li’s approach

We first considered the test set used in [66]. It contains 101 problems from the

Netlib and Kennington collections. We will refer to is as Mehrotra and Li’s test
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collection. In Table 4.2 we present the computational comparison outlining the

total number of iterations and the total number of backsolves necessary to solve

the problems in this test set. Column ho displays the results obtained by the pre-

vious implementation of hopdm, while column dho reports the results obtained

by the current implementation of weighted correctors with a default choice of

the number of centrality correctors. The last column presents the relative change

between the two versions of hopdm tested. As a reference, we also report in this

table the overall statistics of pcx (release 1.1) on these problems. We found the

number of backsolves by counting the number of calls to the functions IRSOLV()

and EnhanceSolve(), for hopdm and pcx respectively.

pcx ho dho Change
Iterations 2114 1871 1445 -22.77%
Backsolves 4849 6043 5717 -5.39%
Backsolves/iter. 2.29 3.23 3.95 +22.29%

Table 4.2: Overall results obtained on Mehrotra and Li’s test collection.

From Table 4.2 we first observe the very small number of backsolves per itera-

tion needed by pcx. This is due to the fact that pcx allows the use of Gondzio’s

multiple centrality correctors only in 4 problems: dfl001, maros-r7, pds-10 and

pds-20. Also we notice that when we allow an adaptive weighting of the correc-

tors there is a tendency to use more correctors per iteration than previously. This

happens because the weighting mechanism makes it more likely to accept some

correctors that would otherwise have been rejected as too aggressive. While this

usually leads to a decrease in iteration count, it also makes each iteration more

expensive, as more backsolves are performed.

In Table 4.3 we detail the problems for which we obtained savings in compu-

tational time. Given the small dimension of most of the problems in the Netlib

collection, we did not expect major savings. However, as the problem sizes in-

crease, we can see that the proposed way of evaluating and weighting the correc-

tors pays off. This led us to investigate further the performance of the proposed

implementation, which we will discuss in Section 4.4.2.

Problem ho dho

bnl1 0.36 0.25
dfl001 150.63 114.80
maros-r7 7.76 7.52
pilot 5.23 4.35

Problem ho dho

pilot87 12.62 11.88
pds-06 24.59 21.31
pds-10 96.57 79.29
pds-20 923.71 633.64

Table 4.3: Problems that showed time savings (times are in seconds).

We were particularly interested in comparing the results produced by our

weighted correctors approach with those obtained by the subspace search scheme
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of Section 4.1.2 and published in [66]. In the tables of results presented in [66],

the best performance in terms of iteration count is obtained by pcx-4, which

uses 4 Krylov subspace vectors. These directions are combined with an affine-

scaling predictor direction and Mehrotra’s second-order correction, leading to

6 backsolves per iteration. This number increases when the linear subproblem

produces an optimal objective value smaller than a specified threshold or the

new iterate fails to satisfy some neighbourhood condition. In these cases the pure

centering direction ∆µw also needs to be computed, and a seventh backsolve is

performed.

In Table 4.4 we present a full comparison of the weighted correctors and

Mehrotra and Li’s strategies. In columns ho-0 and ho-4, we present the results

obtained by hopdm when forcing the use of 0 and 4 multiple centrality correctors.

In the column called ho-∞ we report the results obtained when an unlimited

number of correctors is allowed (in practice we allow no more than 20 correctors).

The last column, labelled dho, presents the results obtained by the default way of

choosing the number of correctors allowed. As we understand the paper [66], pcx-0

uses exactly 2 backsolves per iteration: one to compute the affine-scaling direction,

another to compute Mehrotra’s corrector; pcx-4 computes four additional Krylov

vectors, hence it uses 6 backsolves per iteration. Consequently, up to 2 and 6

backsolves per iteration are allowed in pcx-0 and pcx-4 and in ho-0 and ho-4,

respectively.

The number of backsolves reported for hopdm includes two needed by the

initialisation procedure: the number of backsolves should not exceed 2×Its+2, and

6×Its+2 respectively for ho-0 and ho-4, where Its is the number of iterations. The

observed number of backsolves is often much smaller than these bounds because

the correcting mechanism switches off when the stepsizes are equal to 1 or when

the corrector does not improve the stepsize. Problem afiro solved by ho-4 needs

24 backsolves, 22 of which compute different components of directions, hence

the average number of backsolves per iteration is only 22/6 and is much smaller

than 6. Occasionally, as a consequence of numerical errors, certain components

of direction are rejected on the grounds of insufficient accuracy. In such cases,

the number of backsolves may exceed the stated upper bounds. The reader may

observe, for example, that pilot4 is solved by ho-4 in 16 iterations, but the

number of backsolves is equal to 100 and exceeds 6 × 16 + 2 = 98.

The version ho-∞ requires 1139 iterations to solve the collection of 101 prob-

lems, an average of just above 11 iterations per problem. This version has only an

academic interest, yet it reveals a spectacular efficiency of interior point methods

which can solve difficult linear programs of medium sizes (reaching a couple of
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hundred thousand variables) in just a few iterations. In particular, it suggests that

if we had a cheap way of generating search directions, then it would be beneficial

to have as many as possible.

4.4.2 Larger test problems

We have applied our algorithm to examples from other test collections besides

Netlib. We used a collection of medium to large problems taken from different

sources. Problems CH through CO9 are MARKAL (market allocation) models;

mod2 through worldl are agricultural models used earlier in [32]; problems route

through rlfdual can be retrieved from

http://www.sztaki.hu/~meszaros/public ftp/lptestset/misc/,

and problems neos1 through fome13 can be retrieved from

ftp://plato.asu.edu/pub/lptestset/.

In Table 4.5 we detail the sizes of these problems and provide a time com-

parison between our previous implementation (shown in column ho), and the

current one (in column dho). This test collection contains problems large enough

to show a consistent improvement in CPU time. We only recorded a deterioration

of the performance by more than 1 second in 4 problems (mod2, dbc1, watson-1,

sgpf5y6). The improvements are significant on problems with a large number

of nonzero elements. In these cases, dho produces savings ranging from about

10% to 30%, with remarkable results in rail2586 and rail4284, for which the

relative savings reach 45% and 65%, respectively.

In Figure 4.3, we show the CPU-time based performance profile [24] for the

two algorithms. This graph shows the proportion of problems that each algorithm

has solved within τ times of the best. Hence, for τ = 1 it indicates that dho has

been the best solver on 72% of the problems, against 28% for ho. For larger values

of τ , the performance profile for dho stays above the one for ho, thus confirming

its superiority. In particular, dho solves all problems within 1.3 times of the best.

More numerical results obtained on some collections of stochastic program-

ming problems and quadratic problems can be found in [18].
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Figure 4.3: Performance profiles for ho (dashed) and dho (solid) on the set of
problems of Table 4.5.

4.5 Tables of results

Mehrotra and Li’s test collection

Problem
PCx0 HO-0 PCx4 HO-4 HO-∞ dHO

Its Its Bks Its Its Bks Its Bks Its Bks

25fv47 25 27 55 15 15 95 14 184 18 76

80bau3b 36 31 64 22 15 93 13 195 18 78

adlittle 11 12 25 8 9 47 9 91 10 29

afiro 7 8 13 6 6 24 6 35 7 15

agg 18 21 43 10 13 79 12 143 14 57

agg2 22 22 46 15 14 86 12 151 15 61

agg3 21 20 41 14 15 84 14 147 15 62

bandm 17 14 30 11 10 58 9 106 11 34

beaconfd 10 10 19 7 8 40 9 82 8 23

blend 9 10 20 7 8 42 8 61 8 23

bnl1 36 39 80 27 17 107 17 162 25 91

bnl2 32 25 51 19 16 93 13 171 16 93

boeing1 20 20 40 12 13 76 11 142 15 47

boeing2 12 14 28 10 11 61 10 117 12 34

bore3d 15 15 28 11 11 60 10 102 12 33

brandy 19 19 38 13 14 82 12 160 17 50

capri 18 19 38 12 11 63 11 121 14 43

cycle 23 27 55 13 18 104 15 165 19 83

czprob 27 23 46 16 14 82 13 176 19 60

d2q06c 29 31 64 18 17 105 14 201 17 106

d6cube 19 17 35 11 12 64 11 139 12 64

degen2 12 14 29 8 10 62 9 100 11 44

degen3 16 20 42 10 14 84 11 121 14 84

Table 4.4: Comparison with Mehrotra and Li’s algorithm.
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Problem
PCx0 HO-0 PCx4 HO-4 HO-∞ dHO

Its Its Bks Its Its Bks Its Bks Its Bks

dfl001 47 46 97 31 26 152 25 329 22 222

e226 17 19 40 11 14 87 12 132 16 49

etamacro 23 20 42 14 12 73 12 141 13 52

fffff800 27 30 62 16 17 108 17 244 19 84

finnis 23 21 42 14 29 169 17 197 26 81

fit1d 17 16 34 11 12 75 11 148 15 47

fit1p 17 18 38 12 12 72 11 156 15 47

fit2d 22 29 60 12 17 107 12 160 24 83

fit2p 20 24 49 12 15 90 12 150 17 54

forplan 22 19 39 13 13 80 13 145 15 46

ganges 19 12 26 11 8 50 8 93 10 32

gfrd-pnc 18 14 27 11 9 53 8 91 11 32

greenbea 36 37 76 28 23 146 20 263 22 98

greenbeb 32 41 84 25 22 139 19 242 28 99

grow15 18 11 22 13 8 50 7 94 9 26

grow22 21 11 22 15 8 49 7 66 9 28

grow7 15 11 22 11 8 46 7 57 9 26

israel 19 21 44 12 13 81 11 135 16 52

kb2 12 12 24 8 9 47 8 75 10 29

lotfi 14 14 28 9 9 47 9 77 11 31

maros-r7 17 15 30 11 11 62 9 114 10 68

maros 19 20 41 12 13 79 11 136 16 51

nesm 25 27 56 17 14 87 12 153 17 72

perold 32 24 49 21 14 87 13 172 16 69

pilot 36 27 56 22 15 95 14 170 15 95

pilot4 68 30 62 53 16 100 17 228 19 84

pilotja 29 30 62 21 15 95 14 179 16 84

pilotnov 17 15 30 11 10 53 9 87 10 46

pilotwe 48 30 62 27 15 94 15 204 19 83

pilot87 34 31 64 19 16 99 14 220 15 125

recipe 9 8 15 7 7 35 7 49 7 18

scagr25 16 16 32 11 9 52 8 92 11 35

scagr7 14 12 23 9 10 56 9 82 11 32

scfxm1 18 17 35 11 10 63 9 112 14 43

scfxm2 19 19 40 12 11 70 10 140 15 46

scfxm3 21 19 40 12 12 73 10 128 15 47

scrs8 21 17 35 13 11 72 10 112 13 40

scsd1 9 8 15 7 7 30 7 54 7 18

scsd6 12 10 20 9 8 41 8 68 9 24

scsd8 12 11 21 8 7 33 7 60 9 23

sctap1 16 17 33 9 11 58 11 114 13 37

sctap2 13 15 29 9 10 51 8 86 12 33

sctap3 13 15 30 10 11 51 8 87 12 33

seba 14 9 15 9 7 33 7 114 8 19

share1b 19 21 43 12 13 82 12 129 17 54

share2b 17 15 29 12 9 43 8 72 12 35

shell 20 21 42 13 12 73 10 128 14 44

ship04l 12 11 24 8 8 49 8 118 10 31

Table 4.4: Comparison with Mehrotra and Li’s algorithm.
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Problem
PCx0 HO-0 PCx4 HO-4 HO-∞ dHO

Its Its Bks Its Its Bks Its Bks Its Bks

ship04s 13 12 26 8 9 53 8 104 10 31

ship12l 14 13 28 11 8 47 8 103 11 34

ship12s 12 14 29 8 9 51 8 102 11 34

sierra 19 18 38 11 11 66 10 104 14 43

stair 14 18 36 11 16 91 11 145 12 46

standata 13 16 30 8 12 61 10 117 13 35

standmps 22 21 40 16 14 78 13 147 16 46

stocfor1 11 12 22 7 8 43 8 77 9 26

stocfor2 20 19 38 13 12 74 10 151 15 46

truss 20 17 35 12 10 61 9 113 11 46

tuff 19 15 30 12 9 51 9 98 10 39

vtpbase 11 11 20 7 9 40 8 103 9 25

wood1p 19 22 43 14 14 85 13 162 16 65

woodw 30 29 59 19 16 99 14 167 18 77

cre-a 24 25 52 15 15 97 12 143 18 59

cre-b 40 42 86 23 24 148 16 219 22 99

cre-c 25 28 57 15 16 98 14 184 19 63

cre-d 39 43 88 26 22 137 17 233 22 100

ken-07 15 12 25 10 8 48 7 107 10 31

ken-11 21 15 32 13 10 63 9 133 13 40

ken-13 28 19 40 16 11 69 11 138 15 47

ken-18 30 24 49 21 13 78 9 139 15 63

osa-07 18 23 47 12 13 73 11 111 13 41

osa-14 19 19 39 18 12 73 11 106 15 47

osa-30 24 20 40 18 15 93 13 147 17 60

osa-60 22 20 41 15 12 70 11 118 14 46

pds-02 25 19 38 15 14 77 11 124 15 60

pds-06 35 27 56 23 17 100 15 177 17 118

pds-10 41 32 66 27 20 120 18 199 18 155

pds-20 58 48 98 34 23 136 21 253 21 198

Totals 2,194 2,047 4,169 1,438 1,289 7,608 1,139 13,699 1,445 5,717

Table 4.4: Comparison with Mehrotra and Li’s algorithm.

Other large LP problems

Problem Rows Columns Nonzeros ho dho Change
CH 3,852 5,062 42,910 1.03 1.23 19.4%

GE 10,339 11,098 53,763 5.72 5.46 -4.5%

NL 7,195 9,718 102,570 4.37 3.95 -9.6%

BL 6,325 8,018 58,607 2.15 2.14 -0.5%

BL2 6,325 8,018 58,607 2.35 2.31 -1.7%

UK 10,131 14,212 128,341 2.48 3.21 29.4%

CQ5 5,149 7,530 83,564 2.54 2.60 2.4%

CQ9 9,451 13,778 157,598 9.67 8.84 -8.6%

CO5 5,878 7,993 92,788 3.16 3.59 13.6%

CO9 10,965 14,851 176,346 21.10 15.35 -27.3%

mod2 35,664 31,728 220,116 20.59 21.68 5.3%

Table 4.5: Time comparison on larger problems (times are in seconds).
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Problem Rows Columns Nonzeros ho dho Change
world 35,510 32,734 220,748 26.35 23.41 -11.2%

world3 36,266 33,675 224,959 31.13 27.49 -11.7%

world4 52,996 37,557 324,502 73.21 56.14 -23.3%

world6 47,038 32,670 279,024 39.33 32.79 -16.6%

world7 54,807 37,582 333,509 43.14 36.02 -16.5%

worldl 49,108 33,345 291,942 43.95 36.82 -16.2%

route 20,894 23,923 210,025 40.92 33.78 -17.4%

ulevi 6,590 44,605 162,207 9.04 9.55 5.6%

ulevimin 6,590 44,605 162,207 16.52 16.46 -0.4%

dbir1 18,804 27,355 1,067,815 162.18 146.51 -9.7%

dbir2 18,906 27,355 1,148,847 208.93 156.11 -25.3%

dbic1 43,200 183,235 1,217,046 72.96 77.31 5.9%

pcb1000 1,565 2,428 22,499 0.26 0.33 26.9%

pcb3000 3,960 6,810 63,367 1.13 1.16 2.7%

rlfprim 58,866 8,052 265,975 15.63 15.08 -3.5%

rlfdual 8,052 66,918 328,891 71.17 49.79 -30.0%

neos1 131,581 1,892 468,094 169.11 141.89 -16.1%

neos2 132,568 1,560 552,596 113.86 86.13 -24.4%

neos3 132,568 1,560 552,596 132.02 120.59 -8.7%

neos 479,119 36,786 1,084,461 1,785.80 1,386.58 -22.4%

watson-1 201,155 383,927 1,053,564 138.60 166.21 19.9%

sgpf5y6 246,077 308,634 902,275 49.58 64.45 30.0%

stormG2-1000 528,185 1,259,121 4,228,817 1,661.54 1,623.19 -2.3%

rail507 507 63,009 472,358 9.77 10.10 3.4%

rail516 516 47,311 362,207 7.59 5.89 -22.4%

rail582 582 55,515 457,223 9.67 9.60 -0.7%

rail2586 2,586 920,683 8,929,459 1,029.36 566.82 -44.9%

rail4284 4,284 1,092,610 12,372,358 2,779.63 978.48 -64.8%

fome11 12,142 24,460 83,746 407.20 265.21 -34.9%

fome12 24,284 48,920 167,492 766.96 508.61 -33.7%

fome13 48,568 97,840 334,984 1,545.05 990.62 -35.9%

Table 4.5: Time comparison on larger problems (times are in seconds).
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Chapter 5

Warm-start strategies for
stochastic linear programs.

In this chapter we present the relevant concepts of stochastic programming, stress-

ing the fact that they lead to highly structured problems. We develop an effi-

cient way of constructing an advanced starting point that exploits the inherent

structure of a stochastic programming problem. We present our analysis of the

warm-start strategy and some very promising computational results. The results

presented in this chapter have been the subject of joint work with Jacek Gondzio

and Andreas Grothey [19].

5.1 Stochastic programming

Stochastic programming [10, 51] is a technique to help decision-making in many

areas of applied mathematics, logistics, engineering, economics and finance where

some parameters are unknown.

By stochastic programming, we mean decision and control models in which

data evolves over time, and are subject to significant uncertainty. Uncertainty in

the data is a commonly observed phenomenon in optimization problems coming

from real-life applications. Uncertainty affects problems that aim to plan future

actions based on forecasted prices or costs. It can be argued that nearly all prac-

tical optimization problems display uncertainty in the data, even if this is not

made explicit in the chosen solution method.

When the uncertainty cannot be conveniently forecast, the use of deterministic

models is considered inadequate for decision making. In these situations, being

able to describe and model the uncertain parameters becomes a requirement for

robust decision making. Stochastic programming is the discipline that studies the

methods and provides the tools for modelling uncertainty.

Stochastic programming models uncertainty through the analysis of possible
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future outcomes (scenarios). As the robustness of the decisions taken increases

with the detail of the description, this encourages the generation of very large

scenario trees. Stochastic programming aims to take all possible future scenar-

ios into account, weighting them with their respective probabilities. Its strength

lies in the adaptability which allows expression of preferences such as restricting

exposure to risk. Unlike alternative approaches, it allows modelling of situations

in which possible future events are correlated or follow a time-structure, in that

realisations of some random process become known in stages and it is possible to

react to observed events.

The stochastic programming paradigm is perceived to have some weaknesses.

In particular, these relate to the need for reliable forecasts of the probabilities of

the future events under consideration (which may not be available), and the fact

that taking into account a large number of possible scenarios (especially when

applied to multi-stage models) leads to the generation of large-scale structured

optimization problems, the solution of which is challenging. With the growing

industrial acknowledgement of the benefits of considering uncertainty for planning

purposes, it is expected that the need for solving very large problem instances

will grow as well.

As the dimensions of the problems increase, the computational advantages of

relying on interior point solvers become more and more evident. Very-large-scale

problems, however, create more than one difficulty to general purpose solvers.

Problems of such sizes can be solved provided that they are both sparse and

structured. If that is the case, then the structure present in the matrix should

be effectively exploited. Easier access to powerful parallel machines leads to a

further advantage coming from assigning the computational work to more than

one processing unit through the parallelisation of the linear algebra. This is where

structure-exploiting parallel solvers such as oops [37] excel. Moreover, structure-

exploiting interior point methods can be used not only for linear programming

problems, but also for quadratic and nonlinear problems [36].

5.1.1 Stochastic programming concepts

A stochastic programming problem incorporates the uncertain parameters in the

model. Following [10], this can be illustrated by the two-stage stochastic problem

min
x1

(q1)T x1 + IEξQ(x1, ξ)

s.t. W 1x1 = h1,
x1 ≥ 0,

(5.1)

71



where ξ is a random variable, IEξ is the expectation function and

Q(x1, ξ) = min
y(ξ)

q(ξ)T y(ξ)

s.t. W (ξ)y(ξ) = h(ξ) − T (ξ)x1,
y(ξ) ≥ 0.

(5.2)

We use the convention that first-stage variables and coefficients carry the super-

script 1. Problem (5.1)-(5.2) can be interpreted as an optimization problem in

which some parameters or coefficients are unknown. While (5.1) models the first

stage decisions, (5.2) refers to the second stage decisions, which can be made only

after a realisation of the random variable ξ has become known. Note how the

first-stage decision variables x1 appear in (5.2); at the time when the realisation

become available, the first-stage decisions have already been made.

In stochastic programming, the uncertain environment is described through

a stochastic process which is either assumed to be known, or can be estimated

from historical data or conjectured according to some prescribed properties. The

continuous process ξ is usually further approximated by a discrete distribution in

order to obtain a computationally amenable description. In such a case, the most

common techniques [45, 78] generate a finite, but usually very large, number of

scenarios that represent an approximate description of the possible outcomes.

The model can be generalised to a multi-stage model in which the evolution of

uncertainties can be described as an alternating sequence of decisions and random

realisations that occur at different stages. A multi-stage stochastic program with

recourse is a multi-period mathematical program where parameters are assumed

to be uncertain along the time path. The stages do not necessarily refer to time

periods, but they correspond to steps in the decision process. In particular, at

each stage the realisations of some random parameters become known, and a

decision must be taken. The main interest lies in the first-stage decisions which

consist of all decisions that have to be made before the information is revealed.

Later-stage decisions are allowed to adapt to the information that has become

available up to that point.

The discrete stochastic process can be represented as an event tree T , where

each node denotes a stage when a realisation of the random process becomes

known and a subsequent decision is taken. It is common to consider balanced

trees, in which the number of branches leaving from each node is the same at

all stages. An alternative approach, preferred in multi-stage models of very large

dimensions, is to consider more branches in the earlier stages than in the later

ones, giving rise to the so-called left-heavy trees. The framework we introduce in

Section 5.2 can deal with any shape of trees. A very simple event tree, which we

will use later on for illustration, is shown in Figure 5.1.
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Figure 5.1: An event tree.

To each node of the event tree we associate a set of constraints, an objective

function, and the conditional probability of visiting the node from its parent

node in the previous stage. A path from the root to a leaf node of the event

tree represents a scenario. The probability of each scenario is the product of the

conditional probabilities of visiting each node on the path.

As we have already mentioned, a very large number of scenarios is usually

needed to adequately capture the characteristics of the underlying continuous

distribution, particularly in the multi-stage setting. In this case, the number of

scenarios grows exponentially with the number of decisions considered at each

stage. The question of how to generate an appropriate scenario tree is not trivial,

and has received extensive attention in the literature [26, 45, 46, 78].

5.1.2 The deterministic equivalent formulation

A natural formulation of a stochastic programming problem relies on recursion to

describe the dynamics of the modelled process. The term recourse means that, at

each stage, the decision variables adapt to the different outcomes of the random

parameters. For ease of presentation, we consider the linear version of the recourse

problem:
min
x1

(q1)T x1 + IEξ

[
min
y(ξ)

q(ξ)T y(ξ)
]

s.t. W 1x1 = h1,
T (ξ)x1 + W (ξ)y(ξ) = h(ξ),
x1 ≥ 0, y(ξ) ≥ 0,

(5.3)

where y(ξ) denotes the recourse action which depends on the outcome of the

random process ξ. Note that (5.3) combines (5.1) and (5.2) in a single formulation.

After discretising ξ according to P (yi = ξi) = pi, and using the notation T i =

T (ξi) (analogously for hi, W i, yi and qi), i = 2, . . . , n, problem (5.3) can be
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written in the deterministic equivalent formulation:

min
(x1,y)

(q1)T x1 +
n∑

i=2

pi(qi)T yi

s.t. W 1x1 = h1,
T 2x1 + W 2y1 = h2,

...
. . .

...
T nx1 + W nyn = hn,
x1 ≥ 0, yi ≥ 0.

(5.4)

The deterministic equivalent formulation is derived by writing each possible real-

isation of the random parameters explicitly. The formulation (5.4) does not have

any stochasticity left, but is completely deterministic, and is therefore a common

linear programming problem of (very) large dimensions. Also note that problem

(5.4) displays a dual-block angular structure in the constraint matrix.

The same approach can be immediately extended to multi-stage models. To

formulate the deterministic equivalent of the multi-stage stochastic programming

problem we first need to enumerate all nodes of the event tree. We use a breadth-

first search order, i.e. we start from a root node corresponding to the initial stage

and end with leaf nodes corresponding to the last stage.

Let t = 1, 2, . . . , T denote the stages and let Lt be the set of nodes at stage

t. With a(l) we denote the direct ancestor of node l ∈ Lt (which is a node that

belongs to stage t − 1), and with Dl ⊂ Lt+1 the set of children of node l. The

decision variables are superscripted with the node number l; similar notation

is used for the corresponding matrix and vector blocks. The total number of

scenarios is N .

In the case of one-period recourse, the main constraint that describes the

dynamics of the system has the form

T lxa(l) + W lxl = hl, l ∈ Lt, t = 2, . . . , T,

where T l is the technology matrix that varies with the node in the event tree,

and W l is the recourse matrix that, in general, depends on realisations within the

same stage, but often varies only with time.

The deterministic equivalent formulation of the multi-stage problem has the

following general form:

min
x

T∑

t=1

∑

l∈Lt

pl(ql)T xl

s.t. W 1x1 = h1,
T lxa(l) + W lxl = hl, l ∈ Lt, t = 2, . . . , T,

xl ≥ 0, l ∈ Lt, t = 1, . . . , T.

(5.5)
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Note that the probabilities in the objective function of problem (5.5) are the

unconditional path probabilities: pl is the probability that a path goes through

node l, which equals the product of the conditional probabilities along the path

from the root to node l. Clearly, (5.5) represents a structured linear program. Its

structure should be exploited in the solution algorithm.

If the event tree is traversed with depth-first-search ordering of the nodes

during the generation of the mathematical program, the corresponding constraint

matrix displays a nested dual block-angular structure. Figure 5.2 displays the two

possible structures for the event tree of Figure 5.1 according to the chosen ordering

of nodes. While the different ordering of blocks within the matrix is not relevant

Figure 5.2: Deterministic equivalent corresponding to the event tree of Figure 5.1,
with nodes listed in breadth-first order (left) and depth-first order (right).

for general-purpose solvers, the structure-exploiting software oops [36, 37] can

take full advantage of the nested dual-block angular structure resulting from the

depth-first ordering in its internal object-oriented linear algebra representation.

Several solution methods for stochastic linear programs have been presented

in the literature. These often rely on some decomposition approach [8, 57, 73].

Kall and Mayer [50] provided a comparison of different solution algorithms for

stochastic linear programming problems. In what follows, we consider solving the

deterministic equivalent problem directly by using an interior point method.

5.2 A reduced-tree warm-start iterate

We already surveyed warm-start strategies in Section 3.4. While those strategies

apply to general linear problems, we introduce an approach tailored to stochastic

programming. In particular, we propose to exploit the structure inherent to a

stochastic programming problem to generate a good warm-start iterate.

In the event tree corresponding to a large multistage program, the numerous

leaf nodes descend from a relatively small number of branches in the first few
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stages. Two “neighbouring” scenarios, that is two scenarios that have common

nodes, may display large differences concerning later stage decisions, but the

decisions taken in the earlier stages are identical (nonanticipativity). Moreover,

there may be very little difference among scenarios, and so the large-scale problem

can provide a fine-grained solution to a problem that could have been solved more

coarsely by using a much smaller tree.

These observations suggest a warm-start technique that can be applied in the

context of interior point methods. A warm-start solution is obtained by solving

the stochastic optimization problem for a reduced event tree, whose dimension is

much smaller than that of the complete one. The solution to the reduced problem

is used to construct an advanced iterate for the complete formulation. We pro-

vide evidence that this novel way of exploiting the problem structure to generate

an initial point provides a better iterate (in terms of centrality, feasibility, and

closeness to optimality) than the one produced by a generic strategy.

Techniques for reducing the size of the scenario tree have been studied before

from a probabilistic perspective; in some cases considerable savings can be ob-

tained with such methods. Among others, Dupačová et al. [27] discuss an optimal

scenario reduction technique that couples a large reduction of the scenario tree

with a small loss in accuracy. In their example, a reduction by 50% of the scenario

tree still maintains about 90% of the original accuracy. Here we are interested in

capturing some aspects of the stochasticity of the event tree without assuming

further knowledge of the underlying stochastic process that generated it. Given

this difference from what is required for example by [27], we will use less sophisti-

cated arguments in finding a reduced tree. We remark that if we have knowledge

of the underlying stochastic process, then we could exploit it in the generation of

the reduced tree.

We first study how to build a reduced tree by choosing just some of the

possible scenarios. We provide some insight on how to make this selection, so

that our choice performs better than an arbitrary one. Then we discuss how to

obtain a warm-start solution from the reduced tree that corresponds to the chosen

scenarios. Our aim is to generate a warm-start iterate that allows the complete

problem to be solved to optimality in fewer iterations (and less computing time)

than if starting from an iterate chosen with a standard initial point heuristic [65].

With these aims, we propose a way of choosing a subset of scenarios that we

believe to be sufficiently representative of the whole tree. Our strategy can be

summarised in the steps of Algorithm 5.1.

In the rest of this section we define our method of generating a reduced tree

and describe the construction of the complete warm-start iterate.
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Algorithm 5.1 Reduced-tree warm-start algorithm

Given: The complete event tree T .

Generate a reduced event tree TR ⊂ T ;

Solve the corresponding deterministic equivalent with a loose tolerance;

Use this solution to construct a warm-start iterate for the complete problem;

Solve the complete problem to optimality.

5.2.1 Scenario distance

For the purposes of generating a reduced scenario tree (see Section 5.2.2), we need

to define a measure of distance between scenarios. Recalling that a scenario is a

path in the event tree from the root to a leaf node, we can encode a scenario sk, k =

1, . . . , N , as an ordered set of nodes sk = {l1, . . . , lT : lt = a(lt+1), t = 1, . . . , T−1}.
To each node lt of the tree we associate the 4-tuple ηlt = {T lt ,W lt , hlt , qlt} of

matrices, right-hand side and objective coefficients.

We first define the distance between two nodes it and jt that belong to the

same stage t as

d(ηit , ηjt) = ‖T it − T jt‖ + ‖W it − W jt‖ + ‖hit − hjt‖ + ‖qit − qjt‖, (5.6)

for some norm ‖ · ‖. Hence, we compute the distance between scenarios i and j as

D(si, sj) =
T∑

t=1

d(ηit , ηjt), it ∈ si, jt ∈ sj.

Scenarios that belong to the same branch of the tree will have smaller distance

in general, as they share some of the nodes. Conversely, scenarios are likely to be

farther away if they do not share nodes apart from the root.

5.2.2 Reduced tree generation

We generate the reduced tree by taking into account both the structural and

the stochastic information available from the problem formulation. By structural

information we mean the shape of the event tree, i.e. how the tree branches at the

various stages. By stochastic information we mean the probabilities associated to

each node in the tree, and consequently to each scenario. Hence we adopt two

complementary strategies. First we choose a subset of branches of the event tree;

then, in each branch, we choose the most representative leaf nodes.

We try to capture the structure of the complete tree by making sure that a

sufficient number of different early stage decisions will appear in the reduced tree.

In some sense, we look for a way to span the breadth of the complete tree. For a
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defined small value k < T , where T is the number of stages in the problem, we

choose some of the nodes at the k-th stage, together with all their ancestors up to

the root, to appear in the subtree. The choice of nodes to appear in the reduced

tree should be guided by probabilities. The rationale for this strategy is to ensure

that our warm-start iterate is a good representation of the decisions to be taken

in the first few stages, as getting early decisions right is fundamental for easier

optimization of the later stages. To illustrate this idea, suppose we deal with a

multistage setting where there are T = 4 stages, such as in the tree of Figure 5.3:

for k = 2 we choose nodes 1, 2 and 3 to be in the reduced tree.

Figure 5.3: Complete tree and the reduced tree corresponding to the chosen sce-
narios (in bold).

Each of the chosen nodes in the k-th stage now becomes the root of a branch

of the tree, which we call a subtree. In each subtree we choose the scenario that

minimises the distance to an average scenario in the same subtree. Let St be

the set of nodes in the subtree S at stage t, and |St| its cardinality. For each

stage t within subtree S, we determine an artificial node nt by averaging the data

associated to all nodes at this stage:

nt =
1

|St|
∑

lt∈St

(T lt ,W lt , hlt , qlt), k < t ≤ T.

We define the average scenario for subtree S as the ordered set of nodes

sk = {lk, nk+1, . . . , nT}. Therefore, the average scenario s̄ (in the complete tree)

is obtained by listing the nodes from the root of the tree to the root of the subtree

S, and then by appending the average nodes. We define it as

s̄ = { l1, . . . , lk, nk+1, . . . , nT },

where lt = a(lt+1) for t = 1, . . . , k − 1. Scenario s̄ is completely artificial, and

there is no guarantee that it is feasible. Therefore, we cannot use it directly as our
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representative scenario. Instead, we use it as a reference point which we compare

all other scenarios to, and thus find the closest scenario among the existing ones.

In this way we do not introduce spurious infeasibilities. Hence, in the subtree S

we choose the representative scenario s∗ as

s∗ = sk, k = arg min
i∈S

{(1 − pi)D(si, s̄)}, (5.7)

where, since our ultimate goal is to find the most representative scenario in the

subtree, we use the term (1 − pi) to “bring closer” scenarios that have a higher

probability of occurring.

Continuing the example started above, we consider two subsets of scenarios,

corresponding to nodes 9–12 (for the subtree rooted at node 2) and to nodes 13–

18 (for the subtree rooted at node 3). Within each subset we build the scenario

of average nodes and then find the representative scenario. The resulting reduced

tree is shown in the right of Figure 5.3.

The reduced tree selection induces a function r : T → TR that maps each node

of the complete tree to a corresponding node in the reduced tree in the following

way: if i ∈ TR, then r(i) = i; if i 6∈ TR, then we choose as r(i) the node in the

representative scenario corresponding to node i belonging to the same stage t as

node i. In other words, to get from node i ∈ T to r(i) ∈ TR we walk up the tree

T until we find a node that is also in TR, and from there walk back down the

reduced tree until we arrive at the same stage as the original node. This is shown

in Figure 5.4.

Figure 5.4: Mapping of the nodes in the complete tree to the corresponding re-
duced tree nodes (nodes on the bold arcs map to themselves).

This mapping is used to decide how to initialise the warm-start iterate for the

complete tree, as presented in the next section. We remark that our generation

process guarantees that for each i ∈ T , the following properties hold:

a(r(i)) ∈ TR, and a(r(i)) = r(a(i)), (5.8)
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that is, if a node is in the reduced tree then so is its parent, and the mapping r(·)
preserves the parent-child relationship.

We introduce the set Il of nodes in the complete tree that are initialised by

a given node l ∈ TR, that is Il = { i ∈ T : r(i) = l }, l ∈ TR. It should be noted

that the reduced-tree generation process can be interpreted as a node-aggregation

process, in which all nodes in Il ⊂ T are aggregated into a single node l ∈ TR.

The node aggregation determines the node probabilities pl
R associated with each

node l ∈ TR; we use:

pl
R =

∑

i∈Il

pi. (5.9)

Here and in the following we use the convention that symbols referring to the

reduced tree (such as TR, pi
R) carry the subscript R.

It is worth noting the effect of the probability update (5.9) on the conditional

probabilities. Denote by δi = pi/pa(i) the conditional probability of reaching node

i, given that its parent a(i) has already been reached. The conditional probabilities

in the reduced tree are updated according to

δl
R =

∑

i∈Il∩Da(l)

δi, l ∈ TR. (5.10)

To see that (5.10) holds, we note that for a node l in the k-th stage where the

subtree selection takes place we have Il ∩Da(l) = Il, and (5.10) follows from (5.9)

by dividing through by pa(l). For a node l after stage k we have δl
R = 1, we need to

sum only over the descendants of a(l). With our reduced-tree selection strategy,

for such nodes we actually have δl
R = 1, since there is only one representative

scenario in each subtree.

5.2.3 Construction of the warm-start iterate

Consider the linear programming problem in standard form

min
x

cT x s.t. Ax = b, x ≥ 0, (5.11)

where A ∈ R
m×n is full rank, x, c ∈ R

n and b ∈ R
m. Problem (5.11) corresponds

to the deterministic equivalent (5.5) generated from a given event tree T . We will

refer to it as the complete problem.

From the reduced tree TR we build the reduced deterministic equivalent prob-

lem

min
xR

cT
RxR s.t. ARxR = bR, xR ≥ 0, (5.12)

with AR ∈ R
mR×nR , xR ∈ R

nR and bR ∈ R
mR . We call problem (5.12) the reduced

problem. As we expect that (nR,mR) ≪ (n,m), the reduced problem is much

smaller than the complete formulation, and hence much easier to solve.
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We solve problem (5.12) with an interior point method. For the reasons pre-

sented in Section 3.4, we do not aim for optimality, but instead we aim for a

sufficiently advanced primal–dual feasible point. Therefore we stop at an iterate

(x∗
R, y∗

R, s∗R) ∈ Ns(γ) for a barrier parameter corresponding to merely few digits

of accuracy in the solution. This iterate is used to construct the warm-start point

(x̂, ŷ, ŝ) for the complete problem.

In our approach, the size of the problem changes in both the number of con-

straints and the number of variables. Therefore, we are faced with the challenge of

using the reduced-tree solution to provide a warm-start iterate for the complete

system. This objective can be achieved on a node by node basis by exploiting

the inherent structure of the problem. The sections of the vectors (x̂, ŷ, ŝ) corre-

sponding to node i ∈ T are initialised from the sections of the vectors (x∗
R, y∗

R, s∗R)

corresponding to node r(i) ∈ TR. This process will be detailed below.

Denote by (x̂i, ŷi, ŝi) the part of the vectors (x̂, ŷ, ŝ) corresponding to node

i ∈ T and likewise (xi
R, yi

R, si
R) for components of the solution of the reduced

problem. Then we construct the starting point for the complete problem in the

following manner:

x̂i = x
r(i)
R , (ŷi, ŝi) =

pi

p
r(i)
R

(y
r(i)
R , s

r(i)
R ), i ∈ T , (5.13)

where p
r(i)
R is computed according to (5.9). This means that the dual reduced-tree

solution is spread among the nodes it initialises, as can be seen here:

∑

i∈Ik

(ŷi, ŝi) =
∑

i∈Ik

pi

pk
R

(yk
R, sk

R) = (yk
R, sk

R)
1

pk
R

∑

i∈Ik

pi = (yk
R, sk

R), k ∈ TR.

Considering again the example of Figure 5.3, suppose that in the reduced

tree we accepted only the scenarios that end at node 10 and node 15, so that the

reduced tree consists of nodes 1, 2, 3, 4, 7, 10 and 15. By solving the corresponding

reduced problem, we obtain the parts of the solution vector associated to such

nodes. These can be used directly in the complete iterate (Figure 5.5 top). We fill

in the missing elements by reproducing the solution from the nodes in the same

subtree and the same stage (Figure 5.5 bottom). The proposed way of constructing

the complete iterate is easy to implement and its execution time is negligible.

5.3 Analysis of the warm-start iterate

In this section we study how the warm-start iterate generated with the procedures

presented above satisfies the conditions expressed by Gondzio and Grothey [34].

Contrary to what is assumed in both [94] and [34], in our approach the dimension
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Figure 5.5: Generation of the warm-start iterate.

of the problem changes, as the reduced tree problem is, by construction, much

smaller than the complete problem.

However, similarly to what we did with the solution vector, we can expand the

reduced problem to one which has the same dimension as the complete problem

(5.11). This happens by replicating the blocks in the coefficient matrix and in the

objective and right-hand side vectors:

Ŵ i = W r(i), T̂ i = T r(i), q̂i = qr(i), ĥi = hr(i), i ∈ T ,

as illustrated in Figure 5.6.

Figure 5.6: The expanded system for the event tree of Figure 5.3.

This corresponds to creating the (artificial) expanded problem

min
x

ĉT x s.t. Âx = b̂, x ≥ 0, (5.14)
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the dimension of which, Â ∈ R
m×n, ĉ, x ∈ R

n and b̂ ∈ R
m, corresponds to the

dimension of the complete problem (5.11). Using the notation introduced earlier,

we will denote all symbols referring to the expanded problem with a hat .̂

To analyse the warm-start iterate we can now follow a two-step procedure.

First we note that from an advanced iterate (xR, yR, sR) ∈ NR
s (γ) for the re-

duced problem the procedure in (5.13) constructs a primal–dual feasible point

(x̂, ŷ, ŝ) for the expanded problem. Indeed, in Theorem 5.3 we will show that

(x̂, ŷ, ŝ) ∈ N̂s(γ̂). In the second step we can use this iterate to warm-start the

complete problem. Since in the step from the expanded to the complete problem

the problem data changes but not its size, the methods developed in [34, 94] can

be used to analyse the warm-start iterate.

We start the analysis with a technical result.

Lemma 5.1. Let l ∈ T , then

∑

i∈Dl

T r(i)T ŷi =
pl

p
r(l)
R

∑

k∈DR
r(l)

T kT
yk

R.

Proof. We have this chain of identities:

∑

i∈Dl

T r(i)T ŷi =
∑

i∈Dl

T r(i)T y
r(i)
R

pi

p
r(i)
R

=
pl

p
r(l)
R

∑

i∈Dl

T r(i)T y
r(i)
R

δi

δ
r(i)
R

=
pl

p
r(l)
R

∑

k∈DR
r(l)

T kT
yk

R

δk
R

∑

i∈Ik∩Dl

δi,

where the second equality follows from pi = plδi and p
r(i)
R = p

r(l)
R δ

r(i)
R for i ∈ Dl.

The last equality follows from the fact that we can partition Dl according to

which nodes of the reduced tree are used for initialisation: Dl =
⋃

k∈DR
r(l)

Ik ∩ Dl.

The claim then follows from (5.10).

Theorem 5.2. If (xR, yR, sR) is primal and dual feasible for the reduced problem

(5.12), then the warm-start solution (x̂, ŷ, ŝ) obtained from (5.13) is primal and

dual feasible for the expanded problem (5.14).

Proof. As x̂l = x
r(l)
R , primal feasibility is trivially satisfied:

T r(l)x̂a(l) + W r(l)x̂l = hr(l), l ∈ T . (5.15)

Now we consider dual feasibility. By assumption, the reduced problem solution

satisfies the dual constraints:

W r(l)T y
r(l)
R +

∑

i∈DR
r(l)

T r(i)T y
r(i)
R + s

r(l)
R = p

r(l)
R qr(l), r(l) ∈ TR.
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Multiplying both terms by pl/p
r(l)
R we obtain

pl

p
r(l)
R

(
W r(l)T y

r(l)
R +

∑

i∈DR
r(l)

T r(i)T y
r(i)
R + s

r(l)
R

)
= plqr(l),

which, according to (5.13) and Lemma 5.1, becomes

W r(l)T ŷl +
∑

i∈Dl

T r(i)T ŷi + ŝl = plqr(l), l ∈ T , (5.16)

so (ŷ, ŝ) satisfies the dual constraints in the expanded problem.

Theorem 5.3. If (xR, yR, sR) ∈ NR
s (γ) for some γ ∈ (0, 1), then (x̂, ŷ, ŝ) ∈

N̂s(ργ), where

ρ = min
i∈T

{
pi

p
r(i)
R

n

nR

,
p

r(i)
R

pi

nR

n

}
. (5.17)

Proof. From Theorem 5.2, the warm-start iterate (x̂, ŷ, ŝ) is feasible in the reduced

system. Hence, here we only need to prove centrality. We observe that

µ̂ =
x̂T ŝ

n
=

1

n

∑

i∈T

(x̂i)T ŝi =
1

n

∑

k∈TR

∑

i∈Ik

(x̂i)T ŝi

=
1

n

∑

k∈TR

∑

i∈Ik

pi

pk
R

(xk
R)T sk

R

=
1

n

∑

k∈TR

1

pk
R

(xk
R)T sk

R

∑

i∈Ik

pi

=
nR

n
µR,

where we used (5.13) and (5.9), and µR = xT
RsR/nR. Hence, since (xR, yR, sR) ∈

Ns(γ) implies (xR)j(sR)j ≥ γµR, for j = 1, . . . , nR, using (5.17) we have

x̂l
j ŝ

l
j = (x

r(l)
R )j(s

r(l)
R )j

pl

p
r(l)
R

≥ γµR
pl

p
r(l)
R

= γµ̂
n

nR

pl

p
r(l)
R

≥ ργµ̂, l ∈ T .

The upper bound x̂l
j ŝ

l
j ≤ µ̂/(ργ) can be derived similarly.

5.3.1 Absorbing perturbations

We argue that the difference between the data of the expanded problem (5.14) and

that of the original (complete) problem (5.11) can be interpreted as a perturba-

tion between two problem instances of identical dimension. Clearly the expanded

system has merely a theoretical interest, as we use it to evaluate the magnitude

of the perturbation introduced, and we never generate it in practice.
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We assume that a feasible long-step path-following algorithm based on the

symmetric neighbourhood Ns(γ) is used to solve the warm-started complete prob-

lem. Although the constructed warm-start iterate (x̂, ŷ, ŝ) from (5.13) is feasible

in the expanded problem, it is not feasible in the complete problem. As in [94]

and [34] we derive conditions that guarantee to absorb these infeasibilities with

one modification step. For this, consider the following Newton system:




A 0 0
0 AT I

Ŝ 0 X̂








∆x
∆y
∆s



 =




ξb

ξc

0



 , (5.18)

where ξb = b − Ax̂ and ξc = c − AT ŷ + ŝ are the infeasibilities incurred by

using the expanded iterate (x̂, ŷ, ŝ) to warm-start the complete problem. Such a

modification is termed a Newton step correction in [94] or an Additional centering

iteration in [35]. Gondzio and Grothey [34] analyse the same system, but are

concerned with absorbing primal and dual infeasibility separately by splitting

(5.18) into two separate directions. We will give a more general result and apply

it to the situation of warm-start for stochastic programming problems. To avoid

overburdening notation we will drop the hat from the warm-start vectors. We

will keep it in the neighbourhoods to make a clear distinction between N̂s(γ) and

Ns(γ) denoting the symmetric neighbourhoods for the expanded problem (5.14)

and the complete problem (5.11), respectively.

After some straightforward manipulations following the arguments of [34], the

Newton direction (5.18) can be expressed in terms of the primal and dual residuals

ξb, ξc as

∆x = (XS−1AT (AXS−1AT )−1AXS−1−XS−1)ξc+XS−1AT (AXS−1AT )−1ξb,

∆y = (AXS−1AT )−1(AXS−1ξc + ξb), (5.19)

∆s = (I − AT (AXS−1AT )−1AXS−1)ξc−AT (AXS−1AT )−1ξb.

We consider the matrix

Q = I − S−1AT (AXS−1AT )−1AX,

and restate Lemma 3.2 of [34], which provides a bound on the norm of Q, in terms

of the symmetric neighbourhood Ns(γ).

Lemma 5.4. If w ∈ Ns(γ), then ‖Q‖2 ≤ 1/γ.

Proof. For a point w ∈ Ns(γ), the following inequalities hold:

(xisi)
−1/2 ≤ (γµ)−1/2, and (xisi)

1/2 ≤ (µ/γ)1/2.
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With some manipulations, we can express matrix Q as

Q = X−1/2S−1/2
[
I − X1/2S−1/2AT (AXS−1AT )−1AX1/2S−1/2

]
X1/2S1/2,

where the term in square brackets is an orthogonal projection on the null space

of AX1/2S−1/2, so its Euclidean norm is 1. As desired, we obtain

‖Q‖2 = ‖X−1/2S−1/2‖2‖X1/2S1/2‖2 ≤ 1/γ.

In the next Lemma we state sufficient conditions for the perturbations to

guarantee a full Newton step.

Lemma 5.5. Let w ∈ N̂s(γ) be the warm-start iterate and define the scaled

residuals

ξ̃b = X−1AT (AAT )−1ξb and ξ̃c = S−1ξc. (5.20)

If for β < 1 we have

‖ξ̃b‖∞ + ‖ξ̃c‖∞ ≤ β
(
1 +

√
n/γ

)−1
,

then the full Newton step (5.18) from the warm-start iterate can be taken and

absorbs the complete infeasibilities.

Proof. Using the definitions of the matrix Q and of the relative residual vectors

(5.20), the relations (5.19) simplify to

X−1∆x = −Qξ̃c + (I − Q)ξ̃b = −S−1∆s,

yielding the bound

‖X−1∆x‖∞ ≤ ‖Q‖∞‖ξ̃c‖∞ + (1 + ‖Q‖∞)‖ξ̃b‖∞
≤ (1 + ‖Q‖∞)(‖ξ̃b‖∞ + ‖ξ̃c‖∞).

(5.21)

As (x, y, s) ∈ N̂s(γ), using Lemma 5.4 we get that ‖Q‖∞ ≤ √
n‖Q‖2 ≤ √

n/γ.

Substituting it into (5.21), we obtain

‖X−1∆x‖∞ ≤
(
1 +

√
n/γ

)
(‖ξ̃b‖∞ + ‖ξ̃c‖∞),

which, under the condition of the Lemma, implies

‖X−1∆x‖∞ = ‖S−1∆s‖∞ ≤ β, (5.22)

that is the full Newton step is feasible, as β < 1.

Theorem 5.6. Let w ∈ N̂s(γ) and β < 1. Under the conditions of Lemma 5.5,

the new point w̃ = (x + ∆x, y + ∆y, s + ∆s) ∈ Ns(
1−β2

1+β2 γ).
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Proof. At the new point w̃ the barrier parameter is

nµ̃ =
n∑

i=1

x̃is̃i =
n∑

i=1

(xi + ∆xi)(si + ∆si) =
n∑

i=1

(xisi + ∆xi∆si), (5.23)

as the last equation of (5.18) implies si∆xi +xi∆si = 0, i = 1, . . . , n. Using (5.22)

from Lemma 5.5, we have that ‖X−1∆x‖∞‖S−1∆s‖∞ ≤ β2, and so

−β2xisi ≤ ∆xi∆si ≤ β2xisi; (5.24)

by summing up all products we obtain

−β2nµ ≤
n∑

i=1

∆xi∆si ≤ β2nµ,

which, by adding nµ =
∑

i xisi to all terms and using (5.23), leads to

(1 − β2)nµ ≤ nµ̃ ≤ (1 + β2)nµ. (5.25)

We now study whether the new iterate is still in (some) symmetric neighbour-

hood of the central path by checking the pairwise complementary products

x̃is̃i = xisi + ∆xi∆si =
(
1 +

∆xi∆si

xisi

)
xisi.

Using (5.24) and (5.25) we obtain

x̃is̃i ≥ (1 − β2)γµ ≥ 1 − β2

1 + β2
γµ̃,

x̃is̃i ≤ (1 + β2)
µ

γ
≤ 1 + β2

1 − β2

1

γ
µ̃,

which proves the statement of the theorem.

5.3.2 Conditions on the warm-start iterate

We use Lemma 5.5 to obtain conditions that the reduced tree has to satisfy in

order for a warm-start of the complete problem to be successful. In order to prove

this result, we need to assume that the primal–dual solution (x∗
R, y∗

R, s∗R) to the

reduced stochastic programming problem is uniformly bounded, say,

max{‖x∗
R‖∞, ‖y∗

R‖∞, ‖s∗R‖∞} ≤ B, max{‖(X∗
R)−1e‖∞, ‖(S∗

R)−1e‖∞} ≤ B,

(5.26)

where B > 1. It is worth noting that since we work with the symmetric neigh-

bourhood (2.15), we actually need only the first inequality to hold. Indeed, if

x∗
j ≤ B then 1/s∗j ≤ x∗

j/(γµ) ≤ B/(γµ) and, similarly, if s∗j ≤ B then 1/x∗
j ≤
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s∗j/(γµ) ≤ B/(γµ). In other words, the boundedness of the iterate (x∗
R, y∗

R, s∗R)

implies the boundedness of the component-wise inverses of x∗
R and s∗R.

The reduced problem solution is in a neighbourhood of the central path for

the reduced problem. In particular, this is the case if additional centering steps

are computed once the desired tolerance level has been attained [33]. Using the

feasibility result of Theorem 5.2, the residuals for the complete problem at the

warm-start point (x̂, ŷ, ŝ) are:

ξb = b − Ax̂ = (b − b̂) − (A − Â)x̂,

ξc = c − AT ŷ − ŝ = (c − ĉ) − (A − Â)T ŷ.

It is crucial to ensure that the primal and dual residuals ξb and ξc are small.

By construction, the elements of the vectors (b − b̂) and (c − ĉ) that correspond

to nodes in the reduced tree are zero; for the same reason, the corresponding

blocks of (A − Â) are zero as well. The elements corresponding to the nodes

not considered in the reduced tree will be, in general, non zero. However, as the

scenarios in the reduced tree were chosen according to (5.7) in order to minimize

the distance from the average case, we expect the perturbations to be small.

We can now state the following result, in which we obtain some bounds on

the size of the primal and dual perturbations.

Lemma 5.7. Let the reduced tree be chosen in such a way that for every node

i ∈ T the node distance (5.6) is d(r(i), i) < ε, for an ε > 0. If the reduced problem

solution is primal and dual feasible and satisfies (5.26), then ‖ξb‖∞ ≤ εB and

‖ξc‖∞ ≤ εB|TR|, where |TR| is the number of nodes in the reduced tree.

Proof. Using the form of the stochastic programming problem (5.5) we can write

the primal residual of the complete problem as

‖ξb‖∞ = ‖b − Ax̂‖∞ = max{‖hl − T lx̂a(l) − W lx̂l‖∞ : l = 1, . . . , LT}.

The contribution of a node l ∈ T to ξb is

‖ξl
b‖∞ = ‖hl−T lx̂a(l)−W lx̂l‖

= ‖hl−hr(l) − (T l− T r(l))x̂a(l) − (W l − W r(l))x̂l‖
≤

(
‖hl−hr(l)‖ + ‖T l−T r(l)‖ + ‖W l−W r(l)‖

)
B

≤ d(l, r(l))B ≤ εB,

where the step from the first to the second line uses (5.15), and all norms here

are infinity norms. This clearly implies that ‖ξb‖∞ ≤ εB.

The dual residual for the complete problem at the warm-start point can be

written as

‖ξc‖∞ = ‖c−AT ŷ− ŝ‖∞ = max{‖plql−W lT ŷl−
∑

i∈Dl

T iT ŷi− ŝl‖∞ : l = 1, . . . , LT}.

88



The contribution of a node l ∈ T to ξc is

ξl
c = plql − W lT ŷl −

∑

i∈Dl

T iTŷi − ŝl

= pl(ql−qr(l)) − (W l−W r(l))T ŷl −
∑

i∈Dl

(T i−T r(i))T ŷi

= pl(ql−qr(l)) − pl

p
r(l)
R

[
(W l−W r(l))T y

r(l)
R +

∑

i∈Dl

(T i−T r(i))T δi

δ
r(i)
R

y
r(i)
R

]
,

where the step from the first to the second line uses (5.16) and the next step uses

(5.13) together with pi = plδi and p
r(i)
R = p

r(l)
R δ

r(i)
R . Taking norms (all norms here

are infinity norms) and using the partitioning Dl =
⋃

k∈DR
r(l)

Ik ∩ Dl we obtain

‖ξl
c‖∞ ≤ ‖ql − qr(l)‖ + ‖W l − W r(l)‖‖yr(l)

R ‖ +
∑

k∈DR
r(l)

‖yk
R‖

∑

i∈Ik∩Dl\{k}

‖T i − T k‖ δi

δk
R

≤ ‖ql − qr(l)‖ + ‖W l − W r(l)‖‖yr(l)
R ‖ +

∑

k∈DR
r(l)

‖yk
R‖ε

∑

i∈Ik∩Dl\{k}

δi

δk
R

≤
(
‖ql − qr(l)‖ + ‖W l − W r(l)‖ +

∑

k∈DR
r(l)

(
1 − δk

δk
R

)
ε
)
B ≤ εB|TR|.

The following result combines the findings of Lemmas 5.5 and 5.7.

Theorem 5.8. Let the assumptions of Lemma 5.7 be satisfied and

εB2 max{‖A‖∞‖(AAT )−1‖∞, |TR|} ≤ 1

2
β

(
1 +

√
n/γ

)−1
.

Then the full Newton step (5.18) from the warm-start iterate is feasible and re-

stores primal and dual feasibility.

Proof. Using the definition of ξ̃b from (5.20), the bounds (5.26), and Lemma 5.7,

we get

‖ξ̃b‖∞ = ‖X−1AT (AAT )−1ξb‖∞ ≤ εB2‖A‖∞‖(AAT )−1‖∞ ≤ 1

2
β

(
1 +

√
n/γ

)−1
,

In a similar way, we obtain

‖ξ̃c‖∞ = ‖S−1ξc‖∞ ≤ εB2|TR| ≤
1

2
β

(
1 +

√
n/γ

)−1
.

Now the result follows from Lemma 5.5.

It is worth making a few remarks about these results. Theorem 5.8 implies that

if we can choose the reduced scenario tree such that ε = maxi{d(r(i), i)} is small

enough to satisfy the bound given in the Theorem, then the warm-start point
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constructed from the reduced scenario tree will be successful for the complete

problem. Unfortunately we have only limited influence on ε. Indeed ε is the result

of the variation of the problem data between the expanded and the complete

systems.

There are two approaches that can be adopted if the warm-start for a given

reduced tree fails. The first relies on generating a denser reduced tree. This would

directly reduce ε, but it would also imply solving a bigger reduced deterministic

equivalent, making the solution of the reduced problem more expensive. Since

the description of the new reduced tree is more detailed, we guarantee that the

infeasibility of the new warm-start point is smaller. The second way, fully explored

in the literature (see Section 3.4), suggests reducing the accuracy with which

the reduced problem is solved. This is justified by the fact that the amount of

perturbation that can be absorbed is directly related to µ for the warm-start

point. In our approach we see that, considering (5.26), a change in the accuracy

of the reduced-tree solution (x∗, y∗, s∗) affects the value of B that appears in the

left-hand side of the bound of Theorem 5.8.

It is important to note, however, that the bounds we derived in Lemma 5.7

and Theorem 5.8 express theoretical requirements. There is a gap between theory

and practice. In practice much larger infeasibilities ‖ξ̃b‖, ‖ξ̃c‖ can be absorbed.

This is confirmed by our numerical results where even choosing just 2 scenarios

in the reduced tree leads to a significant reduction in the number of interior point

iterations required to solve the complete problem.

5.4 Implementation and numerical results

We first implemented the strategy of generating a reduced tree and the corre-

sponding warm-start iterate within the hopdm [32] solver. We tested a series of

publicly available stochastic problems in the SMPS format [9] coming from the

POSTS collection available from:

http://users.iems.northwestern.edu/~jrbirge/html/dholmes/post.html.

It should be noted that we disabled hopdm’s presolve in order to preserve the

dimensions of the problems, and thus obtain sensible warm-start points.

We solved the reduced problem with an optimality tolerance of 5.0 × 10−1,

while the optimality tolerance for the complete problem was set to 5.0 × 10−8.

Computations were performed on a Linux PC with a 3.0GHz Intel Pentium pro-

cessor and 1GB of RAM. In Table 5.1 we report the dimensions of the problems

in terms of the number of stages and scenarios for the complete tree, the number
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of iterations and the computing time (in seconds) with cold-start and warm-start.

The latter includes the generation and solution of the reduced problem, and the

construction of the warm-start iterate.

While the analysis of Section 5.3 is very conservative in its estimates of the

absorbable perturbations, in practice we noticed that the reduced-tree warm-start

strategy is effective even with a much sparser tree than suggested by the theory.

In the warm-start case, the reduced tree was built with only 2 scenarios.

The problems solved show an overall good behaviour of our warm-start strat-

egy, with time savings of up to 59% (for problem pltexpA5 6). The generation of

the reduced tree and the solution of the corresponding problem (5.12) is gener-

ally fast, and, as the problem sizes increase become negligible. However, for the

smallest instances of our test set (fxm2 16, fxm3 6 and fxm4 6), it is noticeable

and consumes the savings produced by using an advanced iterate.

Problem data Cold start Warm start
Name Stages Scens Iters Time Iters Time

fxm2 16 2 16 22 1.2 13 1.0
fxm3 6 3 36 30 1.5 17 1.3
fxm3 16 3 256 40 31.1 20 20.7
fxm4 6 4 216 30 8.2 22 8.3
fxm4 16 4 4,096 41 218.3 27 182.6
pltexpA3 16 3 256 26 153.8 14 87.8
pltexpA4 6 4 216 36 55.8 16 27.5
pltexpA5 6 5 1,296 81 772.0 30 311.5
storm27 2 27 41 95.4 22 53.2
storm125 2 125 73 107.3 36 69.1
storm1000 2 1,000 107 1,498.3 45 831.5

Table 5.1: Results obtained with hopdm, 2 scenarios in the reduced tree.

5.4.1 Telecommunication problems

Given the favourable results, we implemented the same approach in oops [37, 36],

where we were able to test larger problem instances. Since oops does not have

features such as presolve and scaling, the accuracy requested in the solution has

to be smaller. We set it to 5.0 × 10−4 which is sufficient for telecommunication

applications. On the other hand, oops makes an effective use of its structure-

exploiting capabilities [37, 36], allowing the solver to tackle large-scale problems

and provides access to parallel computing techniques.

We applied our warm-start strategy to the capacity assignment problem with

uncertain demand, a model relevant to the telecommunication industry [77]. The

objective of this model is to find the optimal choice of capacities to be assigned
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to the links in the network in order to minimize unsatisfied customer demands.

In our particular application we assume that the topology of the network and the

sets of origin–destination pairs are given and are not going to change during the

planning horizon.

We model this situation as a two-stage stochastic linear program with recourse.

The general model has the following form:

min
x

Ed[f(x, d)] s.t.
∑

l∈A

clxl ≤ M, x ≥ 0,

where cl and xl are the cost and capacity of link l ∈ A, respectively, and M

is a bound on the budget. The objective here is to minimize the expected cost

(conditional on the uncertain demand). This general model describes the first

stage decision about the link capacities. The function f(x, d) is defined in the

following model, which describes the second stage decisions:

f(x, d) = min
zp

∑

k∈D

(dk −
∑

p∈Pk

zp)

s.t.
∑

k∈D

∑

p∈Pk:l∈p

zp ≤ xl ∀l ∈ A
∑

p∈Pk

zp ≤ dk ∀k ∈ D

zp ≥ 0,

where dk is the demand for the k-th origin–destination pair, Pk is a given set of

paths linking the k-th pair, and zp is the flow on path p.

To generate the uncertain demands of each scenario we used the approach

described in [77]. For each origin–destination pair k we need to have a demand

estimate dk, which can be determined from historic data or from an educated

guess. The demand is assumed to be uniformly distributed around this estimate.

Hence, the demand ds
k for the k-th pair in scenario s is given by

ds
k = (1 + ǫs

k)dk,

where ǫs
k is a random number generated in the interval [−ρ, ρ]. The value of

ρ > 0 determines the range in which we assume the demand to fluctuate. In our

experiments we chose a value of ρ = 0.5, thus allowing very large variations in

the demand.

The relevant network characteristics of the problems solved are shown in Ta-

ble 5.2, where we detail the size of the network, the number of demands considered,

the overall number of paths and the average number of arcs in each path.

For a problem with N scenarios, the number of constraints and decision vari-

ables (including slacks) are

m = 1 + N × (#A + #D), and n = 1 + #A + N × (#A + #D + #P),
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Name Nodes Arcs Demands Paths Av.Length

mnx 12 50 66 189 2.6
jlg 26 84 264 697 5.6
mgntA 53 158 1,378 3,574 6.7
mgntB 70 210 2,346 6,137 6.4

Table 5.2: Characteristics of the telecommunication networks.

respectively, where #A is the number of arcs, #D the number of demands, and

#P the total number of paths. The dimensions of the problems we generated and

solved are collected in Table 5.3.

Name Rows Cols Nonzeros Name Rows Cols Nonzeros

mnx-100 11 30 85 jlg-100 34 104 503
mnx-200 23 61 170 jlg-200 69 209 1,006
mnx-400 46 122 340 jlg-400 139 418 2,013
mnx-800 92 244 680 jlg-800 278 836 4,025
mnx-1600 185 488 1,362 jlg-1600 556 1,672 8,051
mgntA-100 153 511 2,919 mgntB-100 255 869 4,816
mgntA-200 307 1,022 5,838 mgntB-200 511 1,738 9,633
mgntA-400 614 2,044 11,675 mgntB-400 1,022 3,477 19,265

Table 5.3: Approximate size of the problems in thousands.

In the second and third column of Table 5.4 we report the solution statistics for

oops. Computations were performed on a Linux PC with 3.0GHz Intel Pentium

processor and 2GB of RAM. In all cases the reduced tree was built with merely two

scenarios. Therefore the computation time corresponding to the solution of the

reduced problem (included in time reported in the table) was always negligible.

The savings of warm-start over cold-start strategy vary between 40% and 80% in

most cases.

We have also solved the smallest instances of these problems with Cplex 9.0

Barrier Solver. The problems mnx-100, jlg-100, mgntA-100 and mgntB-100 were

solved in 1.1s, 7.1s, 4379.9s and 9030.4s, respectively. This means that Cplex was

about 4 and 2 times faster than oops on mnx-100 and jlg-100 problems, respec-

tively but it was about 28 times slower than oops on more difficult mgntA-100

and mgntB-100 problems.

In the fourth and fifth columns of Table 5.4 we report the parallel performance

of oops on a cluster of four machines with a 3.0GHz Intel Pentium processor and

2GB of RAM each. In this case, we choose the size of the reduced tree to be

equal to the number of processors employed for two different reasons. First, it

is preferable to assign to oops a balanced number of blocks on each processor,

so we needed to guarantee that each processor gets at least one block; second,

we obtain a more refined starting solution at no additional computational cost.
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Problem Cold start Warm start Cold start Warm start

Iters Time Iters Time Iters Time Iters Time

mnx-100 15 6.7 9 3.9 15 3.9 9 2.6
mnx-200 13 12.9 7 7.3 13 4.6 7 3.5
mnx-400 16 28.9 8 15.5 16 10.5 8 6.3
mnx-800 17 58.8 10 39.5 17 18.8 10 10.7
mnx-1600 19 131.1 10 68.8 19 50.3 10 31.4
jlg-100 21 38.3 6 15.5 21 11.0 6 6.1
jlg-200 45 164.9 17 39.5 45 49.9 17 20.7
jlg-400 44 255.2 18 103.1 43 83.2 19 39.7
jlg-800 27 353.4 10 152.9 29 130.5 10 50.1
jlg-1600 32 855.3 13 360.6 35 286.1 14 129.7
mgntA-100 28 260.0 14 156.2 28 76.9 14 51.6
mgntA-200 50 877.1 35 690.6 50 256.4 34 195.3
mgntA-400 40 1,470.3 14 572.5 40 410.9 14 181.6
mgntB-100 23 511.1 14 318.0 23 137.5 14 103.9
mgntB-200 25 909.4 8 332.4 25 284.2 8 140.5
mgntB-400 29 2,154.5 7 538.1 29 605.5 7 211.6

Table 5.4: Efficiency of the warm-start strategy in oops in the serial case (2
scenarios in the reduced tree) and in the parallel case (4 processors and 4 scenarios
in the reduced tree).

However the analysis of the parallel results collected in Table 5.4 indicates that

the use of a slightly larger reduced tree does not translate into any noticeable

improvement in the warm-start runs as measured with the number of warm-start

iterations. Obviously, the solution times are reduced but this is the effect of using

more processors.
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Chapter 6

Conclusions and future research.

In this chapter we summarise the results obtained and present some observations

derived from the experience gathered during this research. Our focus here is to

draw together the original aspects of this work and present possible directions for

future research.

6.1 Research outcomes

We started by considering what characteristics an interior point iterate should

have. The main feature is undoubtedly centrality, as following the central path

leads to the optimal solution. The centrality requirement is satisfied by defining

a neighbourhood of the central path inside which all iterates should lie. This led

us to consider and analyse the symmetric neighbourhood of the central path,

which expresses both a lower and an upper bound on the complementarity prod-

ucts. A feasible algorithm based on the symmetric neighbourhood Ns(γ) matches

the theoretical complexity of one based on the wide N−∞(γ) neighbourhood, as it

converges in O(n) iterations (Theorem 2.7). Our analysis shows that the presence

of an upper bound does not adversely affect the theoretical properties. As this

neighbourhood is at the heart of the successful multiple centrality correctors tech-

nique [32], we believe that it properly describes the properties of a well-centered

iterate for a practical algorithm.

In Chapter 4 we revisited the technique of multiple centrality correctors and

added a new degree of freedom to it. Instead of computing the corrected direction

as ∆w = ∆pw + ∆cw, where ∆pw and ∆cw are generic predictor and corrector

terms, we allow the use of a weight ω ∈ (0, 1] as a scaling factor for the corrector,

and thus compute the search direction as ∆ωw = ∆pw + ω∆cw. This led to

the weighted correctors scheme of Algorithm 4.1. We combined this modification

with the use of a symmetric neighbourhood of the central path as a tool to

find appropriate target points. The analysis of Jarre and Wechs [48] discussed in
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Section 4.1.1 makes it very clear that the choice of the target t in the right-hand

side of the Newton system is the driving tool in finding effective search directions.

In our new implementation of multiple centrality correctors, we have pushed the

target vector of complementary points further in the infeasible space with the aim

to generate a better correction to the current iterate.

We compared our algorithm against the recently introduced Krylov subspace

scheme of Mehrotra and Li [66]. The two approaches have similarities, as they

look for a set of attractive independent terms from which the final direction is

constructed. Mehrotra and Li’s approach uses the first few elements from the ba-

sis of the Krylov space and solves an auxiliary linear program to find an optimal

combination of all available direction terms. The weighted correctors technique

generates direction terms using centrality correctors of [32], evaluates the weight

for each corrector independently, and it can detect when the use of an additional

corrector term would not be beneficial. The extensive computational results pre-

sented for different classes of problems demonstrate the potential of the weighted

correctors technique, particularly for large-scale problems. The comparison pre-

sented in Section 4.4.1 shows some advantage of our scheme over that of [66]. In-

deed, with the same number of direction terms allowed, our scheme outperforms

Krylov subspace searches by a wide margin. Given that the weighted correctors

scheme follows the usual predictor–corrector framework, we expect it to be eas-

ier to implement in other interior point software. In particular, such a technique

should be used for large-scale problems for which the reduction in number of

iterations repays the increased cost of each iteration.

In Chapter 5 we introduced a technique that exploits the near-optimal solu-

tion to a stochastic linear program corresponding to a reduced scenario tree to

warm-start a much larger problem that encompasses the complete scenario tree.

Our way of reducing the dimension of the scenario tree is based on the assump-

tion that we have no knowledge of the underlying stochastic process. Therefore

we developed an ad-hoc measure of distance between the scenarios in the data

space, and we proposed to choose those that minimize the distance to a selection

of representative scenarios. A warm-start solution is obtained by solving the sto-

chastic optimization problem for the reduced event tree, the dimension of which is

much smaller than that of the complete one. The solution to the reduced problem

is then used to construct an advanced iterate for the complete formulation.

We presented a thorough theoretical analysis of the warm-start iterate gen-

erated by our approach. In particular, we derived conditions which should be

satisfied by the reduced tree to guarantee a successful warm-start of the complete

problem. Most of our analysis concentrated on the primal and dual infeasibilities
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at the warm-start point, as these quantities play a major role in the success of a

warm-start iterate. We obtained bounds on the scaled residuals at the warm-start

point for which a full Newton step aimed at absorbing these residuals is feasible

(Lemma 5.5), and proved that the recovery step keeps the point in a symmetric

neighbourhood of the central path (Theorem 5.6). In Lemma 5.7 and Theorem 5.8

we specialised the above results to our strategy of generating the warm-start point

from a problem of reduced dimension.

We provided computational evidence that this novel way of exploiting the

problem structure to generate an initial point provides a better starting iterate

than the one produced by a generic starting point strategy. We observed that the

iterate generated from the reduced problem provides an advanced starting point

for the solution of the complete problem, in general resulting in a decrease in

the number of iterations needed. As the computational cost of generating such

an iterate is negligible, our warm-start strategy produces consistent savings in

computational time.

6.2 Avenues of research

One of the advantages of generating correctors in a recursive way consists in

the possibility of stopping the correction phase if the use of the corrector does

not offer sufficient improvement. However, we realise that using a small linear

programming subproblem to produce the optimal weighting of search directions

can only improve our results in terms of stepsizes and number of iterations. It was

suggested by Nick Gould and Ken McKinnon to implement a mixed strategy: by

the multiple centrality correctors heuristic we can dynamically find the number

of correctors needed at each iteration; then we find the weights by solving a

subproblem. The subproblem could be very similar to the ones used by Jarre and

Wechs [48] or Mehrotra and Li [66].

As we have seen in Chapter 4, many attempts have been made to find new

and original search directions. We believe that the direction generated from the

Newton system, possibly complemented by Mehrotra’s second-order correction,

are only one of the possible ways of exploring the solution space. From the study

of subspace searches explored in Section 4.1, it is clear that the more directions

we consider, the better the final search direction we get. Therefore, if we had a

cheap way of generating search directions (rather than from solving a system of

linear equations), then these should be employed. In this respect, Mehrotra and

Li [66] mention employing previous search directions. The use of these incurs an

increased memory requirement in order to store them, but no additional compu-
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tational cost. However, it does not seem that they were actually employed in their

implementation. This opens some questions on what constitutes a valid previous

direction (only affine scaling, the final composite direction or something else).

Considering now the warm-start strategy for stochastic programming, we be-

lieve that such approach allows to confirm once again that also interior point

methods can be efficiently warm-started. Moreover, it open some attractive av-

enues of research for warm-start strategies in interior point methods.

If the iterate produced by a reduced tree is not good enough in the sense that

the warm-start strategy fails, then another one can be produced by generating a

modified reduced tree (more bushy, for example). Since this second tree provides a

better approximation to the complete tree, we can expect the infeasibilities of the

corresponding warm-start point to be smaller. Hence, the chances for a successful

warm-start increase. This leads to the idea of allowing a multi-start procedure, in

which a series of reduced trees of increasing size are generated, and the solution to

one of them is used to construct an advanced starting point for the next instance.

In our analysis we assumed not to have any information about the underlying

stochastic process that governs the uncertainty. However, it is clear that such in-

formation would provide additional insight on which the choice of the reduced tree

can be based. In such a situation, two trees would be generated, the complete one,

and an optimally reduced one. As we have seen, in constructing the warm-start

point we need to know the mapping of nodes between the reduced and complete

trees. Therefore, the tree-reduction process should provide this information as

well.

The relative youth of interior point methods means that there is still a lot to

learn and try, particularly in practical implementations. An interesting avenue of

research, according to the author, is the development of specialised techniques to

exploit the problem structure. This means that the development and diffusion of

structure-exploiting codes and of structure-aware modelling languages may be-

come a necessary requirement for a new generation of interior point codes. In this

sense, also theoretical developments in these aspects are wanted and necessary.
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