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Linear programming and optimality conditions

I Linear programming problem and KKT conditions

min cT x

s.t. Ax = b

x ≥ 0





Ax − b

AT y + s − c

XSe



 = 0 x , s ≥ 0

I Perturb the complementarity conditions

XSe = µe

I Solve the perturbed KKT conditions with Newton’s method





A 0 0
0 AT I

S 0 X









∆x

∆y

∆s



 =





b − Ax

c − AT y − s

−XSe + µe
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Mehrotra’s algorithm: Predictor direction

I Exploit linearity: solve independently for two right-hand sides




A 0 0
0 AT I

S 0 X









∆x

∆y

∆s



 =





b − Ax

c − AT y − s

−XSe





︸ ︷︷ ︸

predictor

+





0
0
µe





︸ ︷︷ ︸

corrector

I Predictor: set µ = 0 and solve for the direction ∆a

I Evaluate the allowed stepsizes

αp = max
α

: x + α∆ax ≥ 0 αd = max
α

: s + α∆as ≥ 0

I Predicted gap: ga = (x + αp∆ax)T (s + αd∆as)
I Use the predicted gap to estimate the centering term

µ =
( ga

xT s

)3 xT s

n
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Mehrotra’s algorithm: Corrector direction

I Error in taking a full step in the predictor

(X +∆aX )(S +∆aS)e = XSe +(S∆ax + X∆as)
︸ ︷︷ ︸

−XSe

+∆aX∆aSe

I Consider a second order term and solve for ∆c





A 0 0
0 AT I

S 0 X









∆x

∆y

∆s



 =





0
0

µe − ∆aX∆aSe





I Find the stepsizes in the combined direction ∆ = ∆a + ∆c

I Usually the stepsizes are much better than those obtained by
the predictor
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Multiple centrality correctors

I Try to increase the stepsizes: α̃ = min(α + δ, 1)

I Move the trial point in the neighbourhood

ṽi = xi(α̃)si (α̃) ∈ Ns(γ) = {xi si : γµ ≤ xi si ≤
1

γ
µ}

I Define an achievable target

ti =







0 if ṽi ∈ [γµ, 1
γ
µ]

γµ − ṽi if ṽi < γµ
1
γ
µ − ṽi if ṽi > 1

γ
µ

rhs =





0
0
t





I The number of correctors allowed depends on

Factorization effort

Backsolve effort

I A corrector is accepted if α̂ ≥ α + ρδ

Marco Colombo, Jacek Gondzio Search directions in Interior Point Methods



Primal-dual interior point methods
Pitfalls and workarounds

Future work

Practical pitfalls
Weight of the corrector direction
Computational experience

Practical pitfalls

I The stepsizes in the affine-scaling direction can be very short,
especially if the point is badly centered

I Mehrotra’s corrector is computed on the basis of full step in
affine scaling direction

I Sometimes the magnitude of the corrector is much larger than
the magnitude of the predictor (Cartis, 2005)

I Short steps in the combined direction may be produced
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Weighting the corrector direction

I Cartis (2005) suggests weighting the corrector by α2, based
on a quadratic approximation of a local path from the current
point to a target on the central path (PDSOC)

I Generalize Mehrotra’s scheme

∆ω = ∆a + ω∆c

I Salahi, Peng and Terlaky (2005) propose ω = α and
safeguards based on centering

I Computational study on the weight of the corrector
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Finding the best weight

I Find the corrector direction ∆c





A 0 0
0 AT I

S 0 X









∆x

∆y

∆s



 =





0
0

µe − ∆aX∆aSe





I Set ω ∈ [αpαd , 1] and compute

∆ω = ∆a + ω∆c

I Do a linesearch to find the optimal ω̂ that maximises the
product of the stepsizes αω

p αω

d in ∆ω
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Computational experience

I Results from a collection of 100 problems (Netlib and
Kennington)

I Initial comparison between PCx code (Czyzyk, Mehrotra,
Wright) and HOPDM code (Gondzio)

I Different linear algebra in PCx and HOPDM accounts for
different choices concerning multiple centrality correctors

I Difference in termination criteria: implemented in HOPDM
the criteria used in PCx

I Analysis done on number of iterations and number of
backsolves
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Computational results I

PCx HOPDM HOPDM-ω Change

Iterations 2086 1808 1749 -3%
Backsolves 5542 5547 5789 +5%
Backsolves/iter. 2.66 3.07 3.31 +8%

I Decrease in iteration count but increase in backsolves

I We are accepting more multiple centrality correctors than
normally we would do

I Ask for more stepsize increase in multiple centrality correctors
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Computational results II

I Use more aggressive centrality correctors

δ̂ = 3δ

HOPDM+ HOPDM-ω+ Change Total

Iterations 1765 1613 -8% -10%
Backsolves 5132 5286 +3% -4%
Backsolves/iter. 2.91 3.28 +13% +7%
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Future work

I Clarify the usefulness of ω

I Are there heuristics to (approximately) localise ω̂?

I Choice of settings in multiple centrality correctors
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