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Scope of this talk

Multi-period financial planning problem

Importance of problem formulation

Exploiting structure and parallelism

Warm-start for stochastic programming problems
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Financial planning problems

Why:

◮ Well studied area

◮ Useful application

◮ Possible to generate large-scale problems

Stochastic programming framework:

◮ Multi-period structure

◮ Uncertain returns
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Multi-period financial planning problem

◮ A set of assets J = {1, ..., J} is given.

◮ Initial investment b.

◮ At every stage t = 0, . . . ,T−1 we can buy or sell any assets.

◮ The return of asset j at stage t is uncertain.

Competing objectives:

◮ maximize the final wealth

◮ minimize the associated risk

Mean-Variance formulation (Markowitz): max IE (X ) − ρVar(X ).

X value of the final portfolio

ρ investor’s attitude to risk
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Modelling with event tree

2

1ξ

ξ (t,n)

(t−1,a(n))

(t,n−1)

With asset j ∈ J at node i = (t, n) we associate:

xh
i ,j position in asset j at node i

xb
i ,j ,x

s
i ,j amount of asset j bought/sold at node i

vj value of asset j

rj ,t return of asset j when held at time t

Li ,Ci liabilities/cash contributions at node i
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Asset and Liability Management Problem I

Objective:

IE (X ) = (1 − ct)
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Constraints at each node i :
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Asset and Liability Management Problem II

max
x ,y≥0

y − ρ
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Structure of the objective I

Straightforward representation:

IE (X )−ρVar(X ) = IE (X ) − ρ[IE (X 2) − IE (X )2]

=
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Dense, positive semidefinite Hessian
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Structure of the objective II
Alternative representation:

IE (X ) − ρVar(X ) = y − ρ

[
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Sparse, indefinite Hessian
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Structure in the constraint matrix

Stochastic programming problems give rise to matrices with
block-angular structure:
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The curse of dimensions

The deterministic equivalent formulation produces problems of
extremely large size, even when starting from a small core.

Example: fxm rows cols nonzeros

Core matrix 330 457 2,566
3 stages, 6 nodes: 6,200 9,492 54,589
4 stages, 16 nodes: 386,940 517,282 4,518,039

◮ A detailed description produces robust decisions

◮ Detailed event trees can be very large

◮ The dimensions involved explode

However, remember the presence of structure!
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The way forward

Enter interior point methods:

◮ IPM solvers are available in the community
(CPLEX Barrier, PCx, HOPDM, etc.)

◮ Competitiveness of IPMs grows with the problem size

◮ Parallel implementations are possible

And we can exploit the structure:

◮ Linear algebra: structure-exploiting parallel software OOPS

◮ Algorithmically: warm-start for stochastic problems in IPMs
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OOPS - Object Oriented Parallel (Interior Point) Solver

Key advantages of exploiting the structure in the problem:

◮ Faster linear algebra

◮ Reduced memory use (by use of implicit factorization)

◮ Possibility to exploit (massive) parallelism

◮ We assume that structure is known!

OOPS is a general purpose (parallel) Interior Point solver

◮ Not tuned to any particular hardware or problem

◮ OOPS currently solves LP/QP problems

◮ NLP extension solves nonlinear financial planning problems
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Performance of OOPS

Problem Stgs Blks Assets Scens Cons Vars iter time procs

ALM1 5 10 5 11k 66k 166k 14 86 1
ALM2 6 10 5 111k 666k 1.6M 22 387 5
ALM3 6 10 10 111k 1.2M 3.3M 29 1638 5
ALM4 5 24 5 346k 2.1M 5.2M 33 856 8
ALM5 4 64 12 266k 3.4M 9.6M 18 1195 8
ALM6 4 120 5 1.7M 10.4M 26.1M 18 1470 16
ALM7 4 120 10 1.7M 19.1M 52.2M 19 8465 16
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Warm-start strategies

A warm-start strategy uses the solution to a problem instance to
initialise the next problem.

◮ Important if we are solving a sequence of problems

◮ Often we may expect that the solution to one problem is close
to the solution of the next

◮ An advanced starting point may lead to reduced
computational time than solving the problem from scratch
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Warm-start with IPMs

The solution of a problem is arbitrarily close to a vertex:
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Warm-start with IPMs

The solution of a problem is arbitrarily close to a vertex:

◮ worst possible starting point
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Warm-start with IPMs

The solution of a problem is arbitrarily close to a vertex:

◮ worst possible starting point

◮ some iterations to approach the new central path

◮ some iterations for optimality
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Warm-start for stochastic problems

Observation:
Very detailed event trees provide a fine-grained solution to a
problem that could have been solved more coarsely with a much
smaller tree.

Reduced event tree:
Use the solution to a smaller instance of the problem to generate a
warm-start point.

Main assumptions:

◮ No knowledge on the underlying stochastic processes

◮ Required to solve an instance with a specific tree

◮ We generate and solve the deterministic equivalent
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Scenario distance and representative scenarios

Distance between two nodes at period t:

d(nit
, njt ) = ‖T it − T jt‖ + ‖W it − W jt‖ + ‖hit − hjt‖ + ‖qit − qjt‖

Distance between two scenarios:

D(si , sj) =
T

∑

t=1

d(nit , njt ), it ∈ si , jt ∈ sj
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Scenario distance and representative scenarios

Distance between two nodes at period t:

d(nit
, njt ) = ‖T it − T jt‖ + ‖W it − W jt‖ + ‖hit − hjt‖ + ‖qit − qjt‖

Distance between two scenarios:

D(si , sj) =
T

∑

t=1

d(nit , njt ), it ∈ si , jt ∈ sj

Representative scenario s∗ is the one that minimizes the weighted
distance from an average scenario s̄:

s∗ = sk , k = arg min
i∈S

(1 − pi )D(si , s̄)
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Reduced-tree warm-start technique

Complete tree Reduced tree

1. Solve the problem with a reduced scenario tree

2. Expand the solution found to construct a starting point for
the complete formulation

3. Solve the problem with the complete scenario tree
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Construction of the warm-start iterate

Nodes in the reduced tree:
the solution is already available
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Construction of the warm-start iterate

Nodes in the reduced tree:
the solution is already available

Remaining nodes:
copy the solution from the
corresponding reduced-tree node
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Numerical results with HOPDM

Problem data Cold start Warm start
Name Stgs Scens Iters Seconds Iters Seconds

fxm2-16 2 16 22 1.2 13 1.0
fxm3-6 3 36 30 1.5 17 1.3
fxm3-16 3 256 40 31.1 20 20.7
fxm4-6 4 216 30 8.2 22 8.3
fxm4-16 4 4096 41 218.3 27 182.6

pltexpA3-16 3 256 26 153.8 14 87.8
pltexpA4-6 4 216 36 55.8 16 27.5
pltexpA5-6 5 1296 81 772.0 30 311.5

storm27 2 27 41 95.4 22 53.2
storm125 2 125 73 107.3 36 69.1
storm1000 2 1000 107 1498.3 45 831.5

Marco Colombo, Jacek Gondzio, Andreas Grothey Solution techniques for large-scale financial planning problems



Numerical results with OOPS (4 processors)

Problem data Cold start Warm start
Name Stgs Scens Iters Seconds Iters Seconds

mnx-200 2 200 13 4.6 7 3.5
mnx-800 2 800 17 18.8 10 10.7
mnx-1600 2 1600 19 50.3 10 31.4

jlg-200 2 200 45 49.9 17 20.7
jlg-800 2 800 29 130.5 10 50.1
jlg-1600 2 1600 35 286.1 14 129.7

mgntA-100 2 100 28 76.9 14 51.6
mgntA-200 2 200 50 256.4 34 195.3
mgntA-400 2 400 40 410.9 14 181.6

mgntB-100 2 100 23 137.5 14 103.9
mgntB-200 2 200 25 284.2 8 140.5
mgntB-400 2 400 29 605.5 7 211.6
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Conclusions

◮ Structure can be exploited both at the linear algebra level and
algorithmically

◮ OOPS provides an efficient implementation of a
structure-exploiting parallel software

◮ Reduced tree solutions contain valuable information to
construct a good warm-start iterate

◮ IPMs can be used successfully warm-started
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