A Branch-and-Cut approach

to solve the
Hamiltonian Cycle Problem

Marco Colombo
University of Edinburgh

10 March 2004



Contents

> Hamiltonian Cycle Problem

> Cutting Planes and Branch-and-cut

> Nonconvex quadratic formulation

> Implementation



Two definitions

A cycle is a sequence vq,...,v; Of distinct ver-
tices such that (v;,v;41) € E and vy = vy.

Given a graph G, a Hamiltonian cycle is a cycle
that includes every vertex of G, and each vertex
appears exactly once in the cycle.
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HCP and TSP

The Hamiltonian Cycle Problem asks to find
a Hamiltonian cycle in a graph or to state that
such a cycle does not exist.

The Travelling Salesman Problem asks to find
the minimum distance Hamiltonian cycle in a
weighted graph.

Main differences:

> TSP usually involves undirected graphs (sym-
metric TSP).

> TSP usually involves highly connected graphs
(often complete).

While HCP tries to find “a”" Hamiltonian cycle
in @ graph that contains few of them, TSP tries
to find “the” Hamiltonian cycle of minimum dis-
tance in a graph that has many of them.



IP perspective

G = (V, FE) has m nodes and n edges:

> Choose m edges to be in the cycle and all
others n — m edges to be left out.

> ASsociate a binary variable x;; to each arc:

L. — ) L ifarc (i,7) is used in the HC
“ 771 0 otherwise

> Use the node—arc incidence matrix:

"1 0 1 0 0]
| 0o-1 0o o0 1
A=1 0 1 -1 -1 o
1 0 0 1 -1




IP Formulation

> One arc enters and one arc leaves each node:

Az =0

> T here are m edges in a cycle:

>, mij=m

i,j€V
> Each edge can be either used or not:

r;; € {0,1}

This problem is intractable for nontrivial sizes.

> Relax the integrality constraint and solve the
LP relaxation.

> Deal with nonintegrality...

> It would be easier if there were less integer
variables.



Branch and bound

Partition the problem into smaller problems until
these can be solved. This is done by fixing the
value of one variable at a time, usually the one
with most fractional value.

Bounding procedures allow to remove a subprob-
lem without having to solve it when it is proven
that it cannot possibly contain a better solution
than the current one found so far.

Can we do something better than dealing with
one variable at a time~?



Cutting planes (Gomory)

A cutting plane is a constraint with these two
properties:

> Any feasible integer point will satisfy the cut.

> The optimal solution of the current linear
programming relaxation will violate the cut.

This can be embedded in an iterative algorithm:

> Solve the LP relaxation of the integer prob-
lem.

> If the optimal solution is integer, it solves the
IP as well.

> (Generate a cutting plane and append it to
the existing constraints.

> GO back to the first step.



Branch-and-cut

Relies on the same idea as Branch-and-bound:
divide the problem into smaller and smaller prob-
lems until these can be solved.

The branching does not happen on a variable at
a time. Instead (disjunctive) cutting planes are
added to the problem.

Therefore, each node in the branching tree gen-
erates two sons:

> P; = PN hy, hi=alz<b-1

> P> = PN ho, h2=aT:132b



Some pictures
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Example for BIP

Suppose the current solution contains (among
others) these two fractional variables:

xog4 = 0.7 x35 = 0.5

Introduce two cuts:
rp4 +x35 <1 and  xo4 + 235 > 2.

L35

>

(0,0) N 24

T he cuts remove noninteger points and leave all
integer points untouched.
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Nonconvex QP approach

Relax the integrality constraint on variable x and
express it as a continuous variable 0 < x < 1 such
that (1 —x) = 0.

In the interval [0, 1] the function is non-negative,
and attains its minimum at the extreme points,
which have integer coordinates.

> T his setup is nonconvex.
> It's not possible to use the simplex.

> Also IPMs struggle if the nonconvexity is too
large.
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Exploiting the nonconvex QP approach

A() ={j| (i,7) € E}: (out)-neighbours of 1.

Choose only one node among those in A(%):

Z ng: 1.

jEA()

Now consider the following quantity:
2

Z CIZZ']' — Z x%ZZa}kaleO

FjEA() FEA() kI

> If more than one variable has positive value,
the term is positive.

> When exactly one variable is positive, the
term in zero.

> Minimize this term!
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Matrix notation

Cross—product term: > =z

k,leA(i)
kol
Matrix notation:
(el'x;)? — :B;rxz = :c;-reeTa:i — :15'?31:Z
= :c;-r(eeT —Dx;
= o} Qi
(0 1 1 ] [ 21 | 1
Q; = 1:0 ' , Ty = 5012 , € = 1
i 1 1 O } i xini i i 1

Matrix Q; is an n; x n; matrix (n; = |A(2)]).

= 0 at most one j € A(3) is chosen

> 0 all other cases

T
Z,; Qix; {
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Penalty term

Apply the same procedure to all nodes in the
graph:

T T
>z Qiry =z Qu,

eV
where
[ Q1 ] [ xq ]
Q= @2 and x = I:Q
i Qm | | Tm

> Use a;TQ:c as a penalty term to penalize frac-
tional solutions.

> Objective function:
min a:TQaf;

leads us to assign integer values to the ele-
ments of x.

> Matrix @ is not very sparse.
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A sparser reformulation

Introduce an auxiliary variable y; for each node:

_ T _ __
Yy =xie= ) @

JEA()
T _.T T T _ 2 T
x,; Qir; = (%’ 6)(6 wz‘) — XLy Xy — Y, — L; Ly
-4 } g ]
)i = and ; = :
QZ _1 2 xz’ni
i 1] Y

> Matrix @Q; is much sparser: n;, + 1 nonzeros
intead of n;(n; — 1).

> Q = diag(®;) is now a (n +m) x (n + m)
matrix.

> T he formulation is separable:

min Z :B:‘LFQZQZ‘Z = min CUTQ$
eV
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Complete problem formulation

min = Qx
S.t. Arx = 0
Z Lig — Y — 0 eV
JEA()
y; = 1 1€V
x > 0

To control nonconvexity:

T 2 T
x; Qix; = y; — ax; T;

> Choose a small o (e.g. a« = 0.01).
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Generating cutting planes

Assume that we know how to choose some of
the existing arcs to appear in the cut.

> ASs we want the flow carried by the arcs in the
cut to be integer, the right-hand side must
also be an integer number;

> As we do not allow to remove any integer
solution, the difference in right-hand side for
the two cuts must be 1.

Evaluate the total flow T shipped through the
arcs in the cut from the latest solution of system.

Discard the current fractional solution by asking:

arcs in cut > [T,
arcs in cut < [T].
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A naive cut

Choose two edges such that the sum of their
flows is fractional:
. 1 2 1 1 1 1 1 1
Solution|1 3 323053 2 3|
Cut\OlOlOOOOOOH
, 1 1 1 1 1 1 1 1
Solution|1 3 23220323 2 3|
Cut\OlOOOOOOOOH

> Easy to implement.
> Fast.

> Uses only the current solution.
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Cut based on nodes

Choose a node: put some of the outgoing edges
in the cut so that the sum of their flow is at least
0.5 but not too close to 1.

> Other implementations possible.
> Based on one node or on multiple nodes.

> Exploits the graph structure and the current
solution.
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Knight’s tour problem

1 2 3 4
9 10 11 12

13 14 | 15 16

> A node for each square of the chess board.

> An arc between two squares that are linked
by a knight's move.

Problem | Nodes | Arcs
chess8 64 336
chess10 100 576
chess12 144 880
chess14 196 | 1248
chess20 400 | 2736
chess32 1024 | 7440
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Implementations tested

Formulations:

> Full QP approach:
min Y #1' Q%

=2V
> Partial QP approach: I CV

min Z@T@i’i» for some I CV
il

> Linear approach:

min e x.

Cuts:
> A naive cut;
> A cut based on a single node;

> A cut based on multiple nodes.
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Results

NAIVE CUT:
Partial QP Linear

Problem

Prb | Lev| Time | Prb | Lev | Time
chess8 16 14 1 33 31 1
chess10 24 23 2 52 51 2
chess12 53 36 4 87 32 7
chess14 68 51 15 || 126 | 125 16
chess20 122|114 80 | 283 | 279 100
chess32 342 | 313 942 | 890 | 851 | 1477

SINGLE NODE:
Partial QP Linear

Problem

Prb | Lev | Time | Prb | Lev | Time
chess8 24 17 1 24 23 1
chess10 35 28 3 55 47 3
chess12 51 45 38 94 ’f7 {
chess14 74 59 17 || 120 | 106 16
chess20 193 | 143 117 | 278 | 259 108
chess32 - - -1 706 | 687 | 1238
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Conclusions and future work

The QP approach provides a boost towards
integrality.

Disjunctive cuts alone are not enough.

Strong cutting planes to tackle larger prob-
lems.

Branch less!
Recovery from subcycles.

Heuristic choices for the partial QP.
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