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Two definitions

A cycle is a sequence v1, . . . , vk of distinct ver-

tices such that (vi, vi+1) ∈ E and vk = v1.

1 2

4 3

Given a graph G, a Hamiltonian cycle is a cycle

that includes every vertex of G, and each vertex

appears exactly once in the cycle.

1 2

4 3
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HCP and TSP

The Hamiltonian Cycle Problem asks to find

a Hamiltonian cycle in a graph or to state that

such a cycle does not exist.

The Travelling Salesman Problem asks to find

the minimum distance Hamiltonian cycle in a

weighted graph.

Main differences:

⊲ TSP usually involves undirected graphs (sym-

metric TSP).

⊲ TSP usually involves highly connected graphs

(often complete).

While HCP tries to find “a” Hamiltonian cycle

in a graph that contains few of them, TSP tries

to find “the” Hamiltonian cycle of minimum dis-

tance in a graph that has many of them.
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IP perspective

G = (V, E) has m nodes and n edges:

⊲ Choose m edges to be in the cycle and all

others n − m edges to be left out.

⊲ Associate a binary variable xij to each arc:

xij =

{

1 if arc (i, j) is used in the HC
0 otherwise

i

1 2 3 4 5

0
1

0
0

0

⊲ Use the node–arc incidence matrix:

A =











−1 0 1 0 0
0 −1 0 0 1
0 1 −1 −1 0
1 0 0 1 −1
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IP Formulation

⊲ One arc enters and one arc leaves each node:

Ax = 0

⊲ There are m edges in a cycle:

∑

i,j∈V

xij = m

⊲ Each edge can be either used or not:

xij ∈ {0,1}

This problem is intractable for nontrivial sizes.

⊲ Relax the integrality constraint and solve the

LP relaxation.

⊲ Deal with nonintegrality...

⊲ It would be easier if there were less integer

variables.
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Branch and bound

Partition the problem into smaller problems until

these can be solved. This is done by fixing the

value of one variable at a time, usually the one

with most fractional value.

P

P1 P2

P3 P4

Bounding procedures allow to remove a subprob-

lem without having to solve it when it is proven

that it cannot possibly contain a better solution

than the current one found so far.

Can we do something better than dealing with

one variable at a time?
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Cutting planes (Gomory)

A cutting plane is a constraint with these two

properties:

⊲ Any feasible integer point will satisfy the cut.

⊲ The optimal solution of the current linear

programming relaxation will violate the cut.

This can be embedded in an iterative algorithm:

⊲ Solve the LP relaxation of the integer prob-

lem.

⊲ If the optimal solution is integer, it solves the

IP as well.

⊲ Generate a cutting plane and append it to

the existing constraints.

⊲ Go back to the first step.
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Branch-and-cut

Relies on the same idea as Branch-and-bound:

divide the problem into smaller and smaller prob-

lems until these can be solved.

The branching does not happen on a variable at

a time. Instead (disjunctive) cutting planes are

added to the problem.

Therefore, each node in the branching tree gen-

erates two sons:

⊲ P1 = P ∩ h1, h1 = aTx ≤ b − 1

⊲ P2 = P ∩ h2, h2 = aTx ≥ b

9



Some pictures
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Two disjunctive cuts:
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Example for BIP

Suppose the current solution contains (among

others) these two fractional variables:

x24 = 0.7 x35 = 0.5

Introduce two cuts:

x24 + x35 ≤ 1 and x24 + x35 ≥ 2.

x24

x35

×

×

×

×

b

(0,0)

(1,1)

The cuts remove noninteger points and leave all

integer points untouched.
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Nonconvex QP approach

Relax the integrality constraint on variable x and

express it as a continuous variable 0 ≤ x ≤ 1 such

that x(1 − x) = 0.

x

y

b b

0 1
|1
2

|

1
4

In the interval [0,1] the function is non-negative,

and attains its minimum at the extreme points,

which have integer coordinates.

⊲ This setup is nonconvex.

⊲ It’s not possible to use the simplex.

⊲ Also IPMs struggle if the nonconvexity is too

large.
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Exploiting the nonconvex QP approach

A(i) = {j | (i, j) ∈ E}: (out)-neighbours of i.

Choose only one node among those in A(i):

∑

j∈A(i)

xij = 1.

Now consider the following quantity:







∑

j∈A(i)

xij







2

−
∑

j∈A(i)

x2
ij =

∑

k 6=l

xikxil ≥ 0

⊲ If more than one variable has positive value,

the term is positive.

⊲ When exactly one variable is positive, the

term in zero.

⊲ Minimize this term!
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Matrix notation

Cross–product term:
∑

k, l∈A(i)
k 6=l

xikxil

Matrix notation:

(eTxi)
2 − xT

i xi = xT
i eeTxi − xT

i xi

= xT
i (eeT − I)xi

= xT
i Qixi

Qi =











0 1 . . . 1

1 0 1
... . . .

1 1 0











, xi =











xi1
xi2
...

xini











, e =











1
1
...
1











Matrix Qi is an ni × ni matrix (ni = |A(i)|).

xT
i Qixi







= 0 at most one j ∈ A(i) is chosen

> 0 all other cases
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Penalty term

Apply the same procedure to all nodes in the

graph:
∑

i∈V

xT
i Qixi = xTQx,

where

Q =











Q1
Q2

. . .

Qm











and x =











x1
x2
...

xm











.

⊲ Use xTQx as a penalty term to penalize frac-

tional solutions.

⊲ Objective function:

minxTQx

leads us to assign integer values to the ele-

ments of x.

⊲ Matrix Q is not very sparse.
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A sparser reformulation

Introduce an auxiliary variable yi for each node:

yi = xT
i e =

∑

j∈A(i)

xij

xT
i Qixi = (xT

i e)(eTxi) − xT
i xi = y2

i − xT
i xi

Q̃i =











−1
.. .

−1
1











and x̃i =











xi1
...

xini

yi











⊲ Matrix Q̃i is much sparser: ni + 1 nonzeros

intead of ni(ni − 1).

⊲ Q̃ = diag(Q̃i) is now a (n + m) × (n + m)

matrix.

⊲ The formulation is separable:

min
∑

i∈V

xT
i Q̃ixi = minxT Q̃x
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Complete problem formulation

min x̃T Q̃x̃

s.t. Ax = 0
∑

j∈A(i)

xij − yi = 0 i ∈ V

yi = 1 i ∈ V

x ≥ 0

To control nonconvexity:

xT
i Qixi = y2

i − αxT
i xi

⊲ Choose a small α (e.g. α = 0.01).
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Generating cutting planes

Assume that we know how to choose some of

the existing arcs to appear in the cut.

⊲ As we want the flow carried by the arcs in the

cut to be integer, the right-hand side must

also be an integer number;

⊲ As we do not allow to remove any integer

solution, the difference in right-hand side for

the two cuts must be 1.

Evaluate the total flow T shipped through the

arcs in the cut from the latest solution of system.

Discard the current fractional solution by asking:

arcs in cut ≥ ⌈T ⌉,

arcs in cut ≤ ⌊T ⌋.
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A naive cut

Choose two edges such that the sum of their

flows is fractional:

Solution 1 1
3

2
3

1
2

1
2 0 1

2
1
2

1
2

1
2

Cut 0 1 0 1 0 0 0 0 0 0

Solution 1 1
2

1
2

1
2

1
2 0 1

2
1
2

1
2

1
2

Cut 0 1 0 0 0 0 0 0 0 0

⊲ Easy to implement.

⊲ Fast.

⊲ Uses only the current solution.
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Cut based on nodes

Choose a node: put some of the outgoing edges

in the cut so that the sum of their flow is at least

0.5 but not too close to 1.

i

1 2 3 4 5

8
40 5

40 10
40

7
40

10
40

⊲ Other implementations possible.

⊲ Based on one node or on multiple nodes.

⊲ Exploits the graph structure and the current

solution.
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Knight’s tour problem

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

⊲ A node for each square of the chess board.

⊲ An arc between two squares that are linked

by a knight’s move.

Problem Nodes Arcs

chess8 64 336
chess10 100 576
chess12 144 880
chess14 196 1248
chess20 400 2736
chess32 1024 7440
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Implementations tested

Formulations:

⊲ Full QP approach:

min
∑

i∈V

x̃T
i Q̃ix̃i

⊲ Partial QP approach: I ⊂ V

min
∑

i∈I

x̃T
i Q̃ix̃i, for some I ⊂ V

⊲ Linear approach:

min eTx.

Cuts:

⊲ A naive cut;

⊲ A cut based on a single node;

⊲ A cut based on multiple nodes.
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Results

NAIVE CUT:

Problem
Partial QP Linear

Prb Lev Time Prb Lev Time

chess8 16 14 1 33 31 1
chess10 24 23 2 52 51 2
chess12 53 36 7 87 82 7
chess14 68 51 15 126 125 16
chess20 122 114 80 283 279 100
chess32 342 313 942 890 851 1477

SINGLE NODE:

Problem
Partial QP Linear

Prb Lev Time Prb Lev Time

chess8 24 17 1 24 23 1
chess10 35 28 3 55 47 3
chess12 51 45 8 94 77 7
chess14 74 59 17 120 106 16
chess20 193 143 117 278 259 108
chess32 - - - 706 687 1238
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Conclusions and future work

⊲ The QP approach provides a boost towards

integrality.

⊲ Disjunctive cuts alone are not enough.

⊲ Strong cutting planes to tackle larger prob-

lems.

⊲ Branch less!

⊲ Recovery from subcycles.

⊲ Heuristic choices for the partial QP.
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