A Branch-and-Cut approach to solve the Hamiltonian Cycle Problem

Marco Colombo
University of Edinburgh

10 March 2004

Contents

\triangleright Hamiltonian Cycle Problem
\triangleright Cutting Planes and Branch-and-cut
\triangleright Nonconvex quadratic formulation
\triangleright Implementation

Two definitions

A cycle is a sequence v_{1}, \ldots, v_{k} of distinct vertices such that $\left(v_{i}, v_{i+1}\right) \in E$ and $v_{k}=v_{1}$.

Given a graph G, a Hamiltonian cycle is a cycle that includes every vertex of G, and each vertex appears exactly once in the cycle.

HCP and TSP

The Hamiltonian Cycle Problem asks to find a Hamiltonian cycle in a graph or to state that such a cycle does not exist.

The Travelling Salesman Problem asks to find the minimum distance Hamiltonian cycle in a weighted graph.

Main differences:
\triangleright TSP usually involves undirected graphs (symmetric TSP).
\triangleright TSP usually involves highly connected graphs (often complete).

While HCP tries to find "a" Hamiltonian cycle in a graph that contains few of them, TSP tries to find "the" Hamiltonian cycle of minimum distance in a graph that has many of them.

IP perspective

$\mathrm{G}=(V, E)$ has m nodes and n edges:
\triangleright Choose m edges to be in the cycle and all others $n-m$ edges to be left out.
\triangleright Associate a binary variable $x_{i j}$ to each arc:

$$
x_{i j}= \begin{cases}1 & \text { if arc }(i, j) \text { is used in the HC } \\ 0 & \text { otherwise }\end{cases}
$$

\triangleright Use the node-arc incidence matrix:

$$
A=\left[\begin{array}{rrrrr}
-1 & 0 & 1 & 0 & 0 \\
0 & -1 & 0 & 0 & 1 \\
0 & 1 & -1 & -1 & 0 \\
1 & 0 & 0 & 1 & -1
\end{array}\right]
$$

IP Formulation

\triangleright One arc enters and one arc leaves each node:

$$
A x=0
$$

\triangleright There are m edges in a cycle:

$$
\sum_{i, j \in V} x_{i j}=m
$$

\triangleright Each edge can be either used or not:

$$
x_{i j} \in\{0,1\}
$$

This problem is intractable for nontrivial sizes.
\triangleright Relax the integrality constraint and solve the LP relaxation.
\triangleright Deal with nonintegrality...
\triangleright It would be easier if there were less integer variables.

Branch and bound

Partition the problem into smaller problems until these can be solved. This is done by fixing the value of one variable at a time, usually the one with most fractional value.

Bounding procedures allow to remove a subproblem without having to solve it when it is proven that it cannot possibly contain a better solution than the current one found so far.

Can we do something better than dealing with one variable at a time?

Cutting planes (Gomory)

A cutting plane is a constraint with these two properties:
\triangleright Any feasible integer point will satisfy the cut.
\triangleright The optimal solution of the current linear programming relaxation will violate the cut.

This can be embedded in an iterative algorithm:
\triangleright Solve the LP relaxation of the integer problem.
\triangleright If the optimal solution is integer, it solves the IP as well.
\triangleright Generate a cutting plane and append it to the existing constraints.
\triangleright Go back to the first step.

Branch-and-cut

Relies on the same idea as Branch-and-bound: divide the problem into smaller and smaller problems until these can be solved.

The branching does not happen on a variable at a time. Instead (disjunctive) cutting planes are added to the problem.

Therefore, each node in the branching tree generates two sons:

$$
\begin{array}{ll}
\triangleright P_{1}=P \cap h_{1}, & h_{1}=a^{T} x \leq b-1 \\
\triangleright P_{2}=P \cap h_{2}, & h_{2}=a^{T} x \geq b
\end{array}
$$

Some pictures

Two Gomory cutting planes:

Two disjunctive cuts:

Example for BIP

Suppose the current solution contains (among others) these two fractional variables:

$$
x_{24}=0.7 \quad x_{35}=0.5
$$

Introduce two cuts:

$$
x_{24}+x_{35} \leq 1 \quad \text { and } \quad x_{24}+x_{35} \geq 2 .
$$

The cuts remove noninteger points and leave all integer points untouched.

Nonconvex QP approach

Relax the integrality constraint on variable x and express it as a continuous variable $0 \leq x \leq 1$ such that $x(1-x)=0$.

In the interval $[0,1]$ the function is non-negative, and attains its minimum at the extreme points, which have integer coordinates.
\triangleright This setup is nonconvex.
\triangleright It's not possible to use the simplex.
\triangleright Also IPMs struggle if the nonconvexity is too large.

Exploiting the nonconvex QP approach

$$
\mathcal{A}(i)=\{j \mid(i, j) \in E\}: \text { (out)-neighbours of } i .
$$

Choose only one node among those in $\mathcal{A}(i)$:

$$
\sum_{j \in \mathcal{A}(i)} x_{i j}=1
$$

Now consider the following quantity:

$$
\left(\sum_{j \in \mathcal{A}(i)} x_{i j}\right)^{2}-\sum_{j \in \mathcal{A}(i)} x_{i j}^{2}=\sum_{k \neq l} x_{i k} x_{i l} \geq 0
$$

\triangleright If more than one variable has positive value, the term is positive.
\triangleright When exactly one variable is positive, the term in zero.
\triangleright Minimize this term!

Matrix notation

Cross-product term: $\quad \sum x_{i k} x_{i l}$

$$
\underset{\substack{k \neq l}}{\substack{\text { A }}}
$$

Matrix notation:

$$
\begin{aligned}
&\left(e^{T} x_{i}\right)^{2}-x_{i}^{T} x_{i}=x_{i}^{T} e e^{T} x_{i}-x_{i}^{T} x_{i} \\
&=x_{i}^{T}\left(e e^{T}-I\right) x_{i} \\
&=x_{i}^{T} Q_{i} x_{i} \\
& Q_{i}=\left[\begin{array}{cccc}
0 & 1 & \ldots & 1 \\
1 & 0 & & 1 \\
\vdots & \ddots & \\
1 & 1 & & 0
\end{array}\right], x_{i}=\left[\begin{array}{c}
x_{i 1} \\
x_{i 2} \\
\vdots \\
x_{i n_{i}}
\end{array}\right], e=\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right]
\end{aligned}
$$

Matrix Q_{i} is an $n_{i} \times n_{i}$ matrix $\left(n_{i}=|\mathcal{A}(i)|\right)$.

$$
x_{i}^{T} Q_{i} x_{i} \begin{cases}=0 & \text { at most one } j \in \mathcal{A}(i) \text { is chosen } \\ >0 & \text { all other cases }\end{cases}
$$

Penalty term

Apply the same procedure to all nodes in the graph:

$$
\sum_{i \in V} x_{i}^{T} Q_{i} x_{i}=x^{T} Q x
$$

where
$Q=\left[\begin{array}{llll}Q_{1} & & & \\ & Q_{2} & & \\ & & \ddots & \\ & & & Q_{m}\end{array}\right] \quad$ and $\quad x=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{m}\end{array}\right]$.
\triangleright Use $x^{T} Q x$ as a penalty term to penalize fractional solutions.
\triangleright Objective function:

$$
\min x^{T} Q x
$$

leads us to assign integer values to the elements of x.
\triangleright Matrix Q is not very sparse.

A sparser reformulation

Introduce an auxiliary variable y_{i} for each node:

$$
\begin{aligned}
& y_{i}=x_{i}^{T} e=\sum_{j \in \mathcal{A}(i)} x_{i j} \\
& x_{i}^{T} Q_{i} x_{i}=\left(x_{i}^{T} e\right)\left(e^{T} x_{i}\right)-x_{i}^{T} x_{i}=y_{i}^{2}-x_{i}^{T} x_{i} \\
& \widetilde{Q}_{i}=\left[\begin{array}{cccc}
-1 & & & \\
& \ddots & & \\
& & -1 & \\
& & & 1
\end{array}\right] \quad \text { and } \quad \tilde{x_{i}}=\left[\begin{array}{c}
x_{i 1} \\
\vdots \\
x_{i n_{i}} \\
y_{i}
\end{array}\right]
\end{aligned}
$$

\triangleright Matrix \widetilde{Q}_{i} is much sparser: $n_{i}+1$ nonzeros intead of $n_{i}\left(n_{i}-1\right)$.
$\triangleright \widetilde{Q}=\operatorname{diag}\left(\widetilde{Q}_{i}\right)$ is now a $(n+m) \times(n+m)$ matrix.
\triangleright The formulation is separable:

$$
\min \sum_{i \in V} x_{i}^{T} \widetilde{Q}_{i} x_{i}=\min x^{T} \widetilde{Q} x
$$

Complete problem formulation

$$
\begin{array}{rlr}
\min \tilde{x}^{T} \tilde{Q} \tilde{x} & \\
A x & =0 & \\
\text { s.t. } & & \\
\sum_{j \in \mathcal{A}(i)} x_{i j}-y_{i} & =0 & i \in V \\
y_{i} & =1 & i \in V \\
x & \geq 0 &
\end{array}
$$

To control nonconvexity:

$$
x_{i}^{T} Q_{i} x_{i}=y_{i}^{2}-\alpha x_{i}^{T} x_{i}
$$

\triangleright Choose a small α (e.g. $\alpha=0.01$).

Generating cutting planes

Assume that we know how to choose some of the existing arcs to appear in the cut.
\triangleright As we want the flow carried by the arcs in the cut to be integer, the right-hand side must also be an integer number;
\triangleright As we do not allow to remove any integer solution, the difference in right-hand side for the two cuts must be 1 .

Evaluate the total flow T shipped through the arcs in the cut from the latest solution of system.

Discard the current fractional solution by asking:

$$
\begin{aligned}
\text { arcs in cut } & \geq\lceil T\rceil, \\
\text { arcs in cut } & \leq\lfloor T\rfloor .
\end{aligned}
$$

A naive cut

Choose two edges such that the sum of their flows is fractional:

Solution	1	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
Cut	0	1	0	0	0	0	0	0	0	0

\triangleright Easy to implement.
\triangleright Fast.
\triangleright Uses only the current solution.

Cut based on nodes

Choose a node: put some of the outgoing edges in the cut so that the sum of their flow is at least 0.5 but not too close to 1 .

\triangleright Other implementations possible.
\triangleright Based on one node or on multiple nodes.
\triangleright Exploits the graph structure and the current solution.

Knight's tour problem

1	2	3	4
5	$\mathbf{6}$	7	8
9	10	11	$\mathbf{1 2}$
$\mathbf{1 3}$	14	$\mathbf{1 5}$	16

\triangleright A node for each square of the chess board.
\triangleright An arc between two squares that are linked by a knight's move.

Problem	Nodes	Arcs
chess8	64	336
chess10	100	576
chess12	144	880
chess14	196	1248
chess20	400	2736
chess32	1024	7440

Implementations tested

Formulations:
\triangleright Full QP approach:

$$
\min \sum_{i \in V} \tilde{x}_{i}^{T} \tilde{Q}_{i} \tilde{x}_{i}
$$

\triangleright Partial QP approach: $I \subset V$

$$
\min \sum_{i \in I} \tilde{x}_{i}^{T} \widetilde{Q}_{i} \tilde{x}_{i}, \quad \text { for some } I \subset V
$$

\triangleright Linear approach:

$$
\min e^{T} x
$$

Cuts:
\triangleright A naive cut;
\triangleright A cut based on a single node;
\triangleright A cut based on multiple nodes.

Results

NAIVE CUT:

Problem	Partial QP			Linear		
	Prb	Lev	Time	Prb	Lev	Time
chess8	16	14	1	33	31	1
chess10	24	23	2	52	51	2
chess12	53	36	7	87	82	7
chess14	68	51	15	126	125	16
chess20	122	114	80	283	279	100
chess32	342	313	942	890	851	1477

SINGLE NODE:

	Problem			Partial QP		
			Linear			
	Prb	Lev	Time	Prb	Lev	Time
chess8	24	17	1	24	23	1
chess10	35	28	3	55	47	3
chess12	51	45	8	94	77	7
chess14	74	59	17	120	106	16
chess20	193	143	117	278	259	108
chess32	-	-	-	706	687	1238

Conclusions and future work

\triangleright The QP approach provides a boost towards integrality.
\triangleright Disjunctive cuts alone are not enough.
\triangleright Strong cutting planes to tackle larger problems.
\triangleright Branch less!
\triangleright Recovery from subcycles.
\triangleright Heuristic choices for the partial QP.

