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Linear programming and optimality conditions

◮ Linear programming problem and KKT conditions

min cT x

s.t. Ax = b

x ≥ 0





Ax − b

AT y + s − c

XSe



 = 0 x , s ≥ 0
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◮ Linear programming problem and KKT conditions

min cT x

s.t. Ax = b

x ≥ 0





Ax − b

AT y + s − c

XSe



 = 0 x , s ≥ 0

◮ Perturb the complementarity conditions

XSe = µe
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Linear programming and optimality conditions

◮ Linear programming problem and KKT conditions

min cT x

s.t. Ax = b

x ≥ 0





Ax − b

AT y + s − c

XSe



 = 0 x , s ≥ 0

◮ Perturb the complementarity conditions

XSe = µe

◮ Solve the perturbed KKT conditions with Newton’s method





A 0 0
0 AT I

S 0 X









∆x

∆y

∆s



 =





b − Ax

c − AT y − s

−XSe + µe
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Mehrotra’s predictor-corrector algorithm

◮ Exploit linearity: solve independently for two right-hand sides





A 0 0
0 AT I

S 0 X









∆x

∆y

∆s



 =





b − Ax

c − AT y − s

−XSe





︸ ︷︷ ︸

predictor

+





0
0
µe





︸ ︷︷ ︸

corrector
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Predictor direction

◮ Set µ = 0 and solve for the direction ∆a

◮ Evaluate the allowed stepsizes

αp = max
α

: x + α∆ax ≥ 0 αd = max
α

: s + α∆as ≥ 0
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Predictor direction

◮ Set µ = 0 and solve for the direction ∆a

◮ Evaluate the allowed stepsizes

αp = max
α

: x + α∆ax ≥ 0 αd = max
α

: s + α∆as ≥ 0

◮ Predicted complementarity gap

ga = (x + αp∆ax)T (s + αd∆as)

◮ Estimate the centering term

µ =
( ga

xT s

)3 xT s

n
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Mehrotra’s corrector direction

◮ Error in taking a full step in the predictor

(X +∆aX )(S +∆aS)e = XSe +(S∆ax + X∆as)
︸ ︷︷ ︸

−XSe

+∆aX∆aSe
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Mehrotra’s corrector direction

◮ Error in taking a full step in the predictor

(X +∆aX )(S +∆aS)e = XSe +(S∆ax + X∆as)
︸ ︷︷ ︸

−XSe

+∆aX∆aSe

◮ Consider a second order term and solve for ∆c





A 0 0
0 AT I

S 0 X









∆x

∆y

∆s



 =





0
0

µe − ∆aX∆aSe





Marco Colombo, Jacek Gondzio Further developments of multiple centrality correctors



Primal–dual interior point methods
Pitfalls and workarounds

Conclusions

Introduction
Mehrotra’s predictor-corrector algorithm
Multiple centrality correctors

Mehrotra’s corrector direction

◮ Error in taking a full step in the predictor

(X +∆aX )(S +∆aS)e = XSe +(S∆ax + X∆as)
︸ ︷︷ ︸

−XSe

+∆aX∆aSe

◮ Consider a second order term and solve for ∆c





A 0 0
0 AT I

S 0 X









∆x

∆y

∆s



 =





0
0

µe − ∆aX∆aSe





◮ Find the stepsizes in the combined direction ∆ = ∆a + ∆c
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Multiple centrality correctors

◮ Try to increase the stepsizes: α̃ = min(α + δ, 1)
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Multiple centrality correctors

◮ Try to increase the stepsizes: α̃ = min(α + δ, 1)

◮ Move the trial point in the neighbourhood

ṽi = xi (α̃)si (α̃) ∈ Ns(γ)={xi si : γµ ≤ xi si ≤
1

γ
µ, γ ∈ (0, 1)}
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Multiple centrality correctors

◮ Try to increase the stepsizes: α̃ = min(α + δ, 1)

◮ Move the trial point in the neighbourhood

ṽi = xi (α̃)si (α̃) ∈ Ns(γ)={xi si : γµ ≤ xi si ≤
1

γ
µ, γ ∈ (0, 1)}

◮ Define an achievable target

ti =







0 if ṽi ∈ [γµ, 1
γ
µ]

γµ − ṽi if ṽi < γµ
1
γ
µ − ṽi if ṽi > 1

γ
µ

rhs =





0
0
t
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Multiple centrality correctors

◮ Try to increase the stepsizes: α̃ = min(α + δ, 1)

◮ Move the trial point in the neighbourhood

ṽi = xi (α̃)si (α̃) ∈ Ns(γ)={xi si : γµ ≤ xi si ≤
1

γ
µ, γ ∈ (0, 1)}

◮ Define an achievable target

ti =







0 if ṽi ∈ [γµ, 1
γ
µ]

γµ − ṽi if ṽi < γµ
1
γ
µ − ṽi if ṽi > 1

γ
µ

rhs =





0
0
t





◮ The number of correctors allowed depends on

Factorization effort

Backsolve effort
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Multiple centrality correctors

◮ Try to increase the stepsizes: α̃ = min(α + δ, 1)

◮ Move the trial point in the neighbourhood

ṽi = xi (α̃)si (α̃) ∈ Ns(γ)={xi si : γµ ≤ xi si ≤
1

γ
µ, γ ∈ (0, 1)}

◮ Define an achievable target

ti =







0 if ṽi ∈ [γµ, 1
γ
µ]

γµ − ṽi if ṽi < γµ
1
γ
µ − ṽi if ṽi > 1

γ
µ

rhs =





0
0
t





◮ The number of correctors allowed depends on

Factorization effort

Backsolve effort

◮ A corrector is accepted if α̂ ≥ α + ρδ
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Practical pitfalls

◮ The stepsizes in the affine-scaling direction can be very short,
especially if the point is badly centered

◮ Mehrotra’s corrector is computed on the basis of full step in
affine scaling direction

◮ Sometimes the magnitude of the corrector is much larger than
the magnitude of the predictor (Cartis, 2005)

◮ Short steps in the combined direction may be produced
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Weighting the corrector direction

Recent developments:

◮ Cartis (2005) suggests weighting the corrector by α2, based
on a quadratic approximation of a local path from the current
point to a target on the central path (PDSOC)
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Weighting the corrector direction

Recent developments:

◮ Cartis (2005) suggests weighting the corrector by α2, based
on a quadratic approximation of a local path from the current
point to a target on the central path (PDSOC)

◮ Generalize Mehrotra’s scheme

∆ω = ∆a + ω∆c
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Weighting the corrector direction

Recent developments:

◮ Cartis (2005) suggests weighting the corrector by α2, based
on a quadratic approximation of a local path from the current
point to a target on the central path (PDSOC)

◮ Generalize Mehrotra’s scheme

∆ω = ∆a + ω∆c

◮ Salahi, Peng and Terlaky (2005) propose ω = α and
safeguards based on centering
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Finding the best weight

◮ Find the corrector direction ∆c





A 0 0
0 AT I

S 0 X









∆x

∆y

∆s



 =





0
0

µe − ∆aX∆aSe





◮ Set ω ∈ [αpαd , 1] and compute

∆ω = ∆a + ω∆c

◮ Do a linesearch to find the optimal ω̂p and ω̂d that maximize
the stepsizes in ∆ω
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Weighted scheme for multiple centrality correctors

◮ Stronger emphasis on the symmetric neighbourhood

Ns(γ)={xi si : γµ ≤ xi si ≤
1

γ
µ, γ ∈ (0, 1)}

◮ Use more aggressive centrality correctors

δ̂ = 3δ

◮ Find the best weight ω̂ for each corrector

◮ Better control on when we should stop correcting (no fixed
number of correctors)
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Computational experience

◮ Initial comparison between PCx code (Czyzyk, Mehrotra,
Wright) and HOPDM code (Gondzio)

◮ Different linear algebra in PCx and HOPDM accounts for
different choices concerning multiple centrality correctors

◮ Analysis done on number of iterations and number of
backsolves

◮ Time comparison between HOPDM and HOPDM-ω on larger
problems
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Computational results I

Results from a collection of 101 problems (Netlib and Kennington)

PCx HOPDM HOPDM-ω Change

Iterations 2114 1871 1445 -22%
Backsolves 4849 6043 5717 -5%
Backsolves/iter. 2.29 3.23 3.95 +22%

◮ Decrease in iteration count but increase in backsolves

◮ We are accepting more multiple centrality correctors than
normally we would do
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Computational results II

Time comparison (in seconds) on larger problems
Problem HO HO-ω Diff Problem HO HO-ω Diff

mod2 20.5 21.6 5.3% world 26.3 23.4 -11.2%

world3 31.1 27.4 -11.7% world4 73.2 56.1 -23.3%

world6 39.3 32.7 -16.6% world7 43.1 36.0 -16.5%

worldl 43.9 36.8 -16.2% route 40.9 33.7 -17.4%

ulevi 9.0 9.5 5.6% ulevimin 16.5 16.4 -0.4%

dbir1 162.1 146.5 -9.7% dbir2 208.9 156.1 -25.3%

pcb3000 1.1 1.1 2.7% rlfprim 15.6 15.0 -3.5%

rlfdual 71.1 49.7 -30.0% neos1 169.1 141.8 -16.1%

neos2 113.8 86.1 -24.4% neos3 132.0 120.5 -8.7%

neos 1785.8 1386.5 -22.4% watson-1 138.6 166.2 19.9%

sgpf5y6 49.5 64.4 30.0% stormG2 1661.5 1623.1 -2.3%

rail507 9.7 10.1 3.4% rail516 7.5 5.8 -22.4%

rail582 9.6 9.6 -0.7% rail2586 1029.3 566.8 -44.9%

rail4284 2779.6 978.4 -64.8% fome11 407.2 265.2 -34.9%

fome12 766.9 508.6 -33.7% fome13 1545.0 990.6 -35.9%
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Conclusions

◮ The theoretical suggestion of using ω = αpαd provides a
reliable lower bound, but is too restrictive

◮ Doing a line search in order to find the best weight pays off in
terms of reduction of iteration count

◮ The quality of the points allows for more aggressive multiple
centrality correctors

◮ The computational experience validates the heuristic choices,
with savings in number of iterations and in computing time

Reference

◮ http://www.maths.ed.ac.uk/˜gondzio/reports/mcjgMCC.pdf
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