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Outline



Problem statement

A codeword c ∈ C is sent over a noisy, memoryless channel.
A vector y is received.

Decoding problem:
Find the most likely codeword c given the vector y .



Decoding by Linear Programming

For binary LDPC codes, Feldman, Wainwright and Karger (2005)
showed that the decoding problem can be posed as a linear
programming problem.

Great news from the OR perspective!

I Analytical tools to understand the problem

I Numerical tools to solve it

An important bridge between Engineering–OR communities.
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Maximum likelihood principle

Maximum likelihood codeword:

ĉ = arg max
c∈C

P(c|y)

Consider a negative log-likelihood ratio as a cost function:

γi = log

(

P(yi |ci = 0)

P(yi |ci = 1)

)

The problem can be stated as:

min

n
∑

i=1

γici s.t. c ∈ C
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Fundamental theorem of linear programming:
For a linear programming problem with a feasible domain P
containing at least one extreme point, the optimal objective value
is either unbounded or is achievable at one extreme point of P.

Cleverly consider only a subset of points.



Again, that combinatorial explosion...

Linear inequality description:
A full dimensional polyhedron P has a unique minimal
representation by a finite set of linear inequalities:

Ax ≤ b.



Again, that combinatorial explosion...

Linear inequality description:
A full dimensional polyhedron P has a unique minimal
representation by a finite set of linear inequalities:

Ax ≤ b.

However...

I The number of inequalities is exponential in the code length

I Optimally decoding a LDPC code is NP-Complete.

Consider a relaxation.



Local codeword polytope

Consider one check node Cj :

Cj

1 2 3 4 5

Valid configurations for Cj :

Sj =
{

∅, {1, 2}, {1, 4}, {2, 4}
}

Introduce a variable wj ,s for each valid configuration:

∑

s∈Sj

wj ,s = 1, 0 ≤ wj ,s ≤ 1 (?)
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Introduce variables fi for each code bit yi :
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Linear programming relaxation

Introduce variables fi for each code bit yi :

fi =
∑

s∈Sj ,s3i

wj ,s , 0 ≤ fi ≤ 1 (??)

Define the polytope Q = {(?) + (??)}:

min
n
∑

i=1

γi fi s.t. (f , w) ∈ Q



OR perspectives on relaxation

The relaxation can produce fractional solutions.

Mathematically we can provide ways for recovering from failures:

I Strengthen the relaxation (cutting planes, combinatorial
optimization)

I Approaches based on branching

I Nonconvex quadratic formulation



Cutting planes

A cutting plane is a constraint with these two properties:

I Any feasible integer point will satisfy the cut.

I The optimal solution of the current linear programming
relaxation will violate the cut.

This can be embedded in an iterative algorithm:

I Solve the LP relaxation of the integer problem.

I If the optimal solution is integer, it solves the IP as well.

I Generate a cutting plane and add it to the constraints.



Example of cutting planes

P

x1

x2

×

×

×

×

×

×

×

×

×

×

�

x1

x2

×

×

×

×

×

×

×

×

×

×

�

x1

x2

×

×

×

×

×

×

×

×

×

×��



Branch-and-cut

Divide the problem into smaller problems until these yield an
integral solution.

Disjunctive cutting planes are added to the problem. Each node in
the branching tree generates two sons:

Q∩ h1, h1 = aT x ≤ b − 1

Q∩ h2, h2 = aT x ≥ b



Example for BIP

Suppose the current solution contains (among others) these two
fractional variables:

f2 = 0.7 f5 = 0.5

f2

f5

×

×

×

×

�

(0, 0)

(1, 1) Introduce two cuts:

f2+f5 ≤ 1 and f2+f5 ≥ 2.



Nonconvex QP approach

Express a continuous variable 0 ≤ x ≤ 1 such that x(1 − x) = 0.
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In the interval [0, 1] the function is non-negative, and attains its
minimum at the extreme points, which have integer coordinates.
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In the interval [0, 1] the function is non-negative, and attains its
minimum at the extreme points, which have integer coordinates.

Issues:

I This setup is nonconvex: not possible to use the simplex.

I Interior point methods struggle if the nonconvexity is large.



Exploiting the nonconvex QP approach

An integral solution satisfies:

fi (1 − fi ) = 0, i = 1, . . . , n

Consider the following quantity:

∑

i

fi (1 − fi ) ≥ 0

I For a fractional solution, the term is positive.

I For an integral solution, the term in zero.



Exploiting the nonconvex QP approach

An integral solution satisfies:

fi (1 − fi ) = 0, i = 1, . . . , n

Consider the following quantity:

∑

i

fi (1 − fi ) ≥ 0

I For a fractional solution, the term is positive.

I For an integral solution, the term in zero.

This term can be used as a penalty term in the objective:

min
∑

i

λi fi + α
∑

i

fi (1 − fi )



The 3 S’s in linear programming

The practical efficiency for a solver is affected by these
considerations regarding the constraint matrix:

I Size

I Sparsity

I Structure



The 3 S’s in linear programming

The practical efficiency for a solver is affected by these
considerations regarding the constraint matrix:

I Size

I Sparsity

I Structure

These can affect the choice of solution methods:

I Simplex method

I Interior point methods

I Specialized algorithms



Checklist on solution methods

Simplex method:

I Suited for linear programming

I Explore the vertices of the polytope

I Polynomial complexity in practice

I Easy to warmstart

I Difficult to parallelize



Checklist on solution methods

Simplex method:

I Suited for linear programming

I Explore the vertices of the polytope

I Polynomial complexity in practice

I Easy to warmstart

I Difficult to parallelize

Interior point methods:

I Suited for linear, quadratic, nonlinear programming

I Move in the interior of the polytope

I Polynomial complexity in practice and theory

I Difficult to warmstart

I Parallel implementation and structure exploitation



Conclusions

An important bridge between Engineering and OR:

I For OR: interesting application with peculiar requirements

I For Engineering: exploring the available tools and techniques

I More work to be done!
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