
OOPS: a structure-exploiting parallel solver

Marco Colombo

T
H

E

U N I V E R S

I T
Y

O
F

E
D I N B U

R
G

H

School of Mathematics
University of Edinburgh

CARIPLO Workshop on Numerical Stochastic Programming
Edinburgh, 4 September 2008

OOPS: a structure-exploiting parallel solver

Scope of this talk

Interior point methods

Exploiting structure and parallelism

Multi-period financial planning problem

OOPS: a structure-exploiting parallel solver

Interior point methods

Interior point methods

I KKT conditions for optimality

min c>x + 1
2x>Qx

s.t. Ax = b

x ≥ 0





Ax − b

−Qx + A>y + s − c

XSe



 = 0 x , s ≥ 0

where X = diag(x), S = diag(s)

OOPS: a structure-exploiting parallel solver

Interior point methods

Interior point methods

I KKT conditions for optimality

min c>x + 1
2x>Qx

s.t. Ax = b

x ≥ 0





Ax − b

−Qx + A>y + s − c

XSe



 = 0 x , s ≥ 0

where X = diag(x), S = diag(s)

I Perturb complementarity and enforce strict positivity

XSe = µe x , s > 0

Solve the perturbed KKT conditions with Newton’s method





A 0 0
−Q A> I

S 0 X









∆x

∆y

∆s



 =





b − Ax

c + Qx − A>y − s

−XSe + µe





OOPS: a structure-exploiting parallel solver

Interior point methods

Interior point methods (cont.)

Perturb the complementarity conditions:

XSe = µe

IPMs solve a sequence of problems parametrised by µ.

Let µ → 0:

I The perturbed conditions better approximate the original
KKT conditions

I The solution traces a continuous path from the starting point
to the optimal solution (central path)

OOPS: a structure-exploiting parallel solver

Interior point methods

Centrality

IPMs follow the central path to find the optimal solution.
The iterates lie in some neighbourhood of the central path.

Polynomial complexity:

in theory: O(
√

n) or O(n) iterations

in practice: O(ln n) iterations

OOPS: a structure-exploiting parallel solver

Interior point methods

Linear algebra

The Newton system can be reduced to

[
−Q − Θ A>

A 0

]

︸ ︷︷ ︸

Φ

[
∆x

∆y

]

=

[
r

h

]

, Θ = X−1S

At each iteration:

I factorize Φ = LDL>

I backsolve to compute the search direction (∆x , ∆y)

Key to efficient implementation is exploiting structure of Φ

OOPS: a structure-exploiting parallel solver

Interior point methods

Structures of A and Q imply structure of Φ

(
Q A>

A 0

)

P

(
Q A>

A 0

)

P−1

















−1

Q

Q

Q

Q

dT

A T

BT

dT

dT

dT

A T

A T

A T

A T

A T

A T

BTBTBT

BT

BT BT

−1

−1

A

A

A

B

B

A

B

d d d d

B

B

A

B

A

A

































A

A TQ

A

A TQ

B

B

BTBT

A T

A

BT

dd

BT

dd

B

dT

dT

B

dT

dT

A

A TQ

A

A TQ

B

B

BTBT

A T

A

A

A T

−1

−1

















OOPS: a structure-exploiting parallel solver

Interior point methods

Sources of structure I: Uncertainty

T

T

T

W

W

W

T W

T

T

T

T W

T

T

T

W

W

W

W

W

W

OOPS: a structure-exploiting parallel solver

Interior point methods

Sources of structure II: Common resources

B B B

A

A

A

OOPS: a structure-exploiting parallel solver

Interior point methods

Sources of structure III: Dynamics

B

B

B

−I

−I

−I

A

A

A

B

B

B

−I

−I

−I

A

A

AA

A A −IB

A A B −I

A

A

OOPS: a structure-exploiting parallel solver

Exploiting structure and parallelism

OOPS - Object Oriented Parallel (Interior Point) Solver

Key advantages of exploiting the structure in the problem:

I Faster linear algebra

I Reduced memory use (by use of implicit factorization)

I Possibility to exploit (massive) parallelism

I We assume that structure is known!

OOPS is a general purpose (parallel) Interior Point solver

I Written in C with an object-oriented design

I Not tuned to any particular hardware or problem

I OOPS currently solves LP/QP problems

I NLP extension solves nonlinear financial planning problems

OOPS: a structure-exploiting parallel solver

Exploiting structure and parallelism

Tree representation of the matrix structure

D10

D30

D20

23D

22D

21D

12D

11D

C

BB

B B B

D1

D2

21 23

1211

C32

31

22

D
ua

l B
lo

ck
 A

ng
ul

ar
 S

tr
uc

tu
re

Pr
im

al
 B

lo
ck

 A
ng

ul
ar

 S
tr

uc
tu

re

Pr
im

al
 B

lo
ck

 A
ng

ul
ar

 S
tr

uc
tu

re

D30

C31
A

D1 D2

D D1211 D10 B B11 12 D D D D B B B21 22 23 20 21 22 23

C32

Every block should have a structure-exploiting linear algebra:

I Blocks may be nested

I Blocks may have different structure

OOPS: a structure-exploiting parallel solver

Exploiting structure and parallelism

Object-oriented linear algebra implementation

Every node in the tree has its own linear algebra implementation

I An implementation realises an abstract linear algebra interface

I Different implementations for different structures are available

Di

Bi

RankCorrector

Rank corrector

implementations

D

R

SparseMatrix

general sparse

linear algebra

matrix

y=Mtx

y=Mx

SolveLt

SolveL

factorize

Schur complement

Implementations based on

BorderedBlockDiagonal

M
at

ri
x

In
te

rf
ac

e

OOPS: a structure-exploiting parallel solver

Exploiting structure and parallelism

Example: bordered block-diagonal structure

Factorize Φ = LDL>

Φ=

2

6

6

6

4

Φ1 B
>

1

. . .
.
.
.

Φn B
>

n

B1 · · · Bn Φc

3

7

7

7

5

L=

2

6

6

6

4

L1

. . .

Ln

L1,c · · · Ln,c Lc

3

7

7

7

5

D =

2

6

6

6

4

D1

. . .

Dn

Dc

3

7

7

7

5

Cholesky-like factors can be obtained by Schur-complement:

Φi = LiDiL
>

i

Li ,c = Bi (DiL
>

i)−1

Ci = Li ,cDiL
>

i ,c

C ≡ Φc −
∑

i Ci = LcDcL
>

c

OOPS: a structure-exploiting parallel solver

Exploiting structure and parallelism

Example (cont.)

System Φx = b can then be solved by

zi = L−1
i bi xc = L−>

c D−1
c zc

zc = L−1
c (bc −

∑
Li ,czi) xi = L−>

i (D−1
i zi − L>i ,cxc)

I Operations (Cholesky, Solve, Product) are only performed on
sub-blocks

I We can also exploit structure in sub-blocks

OOPS: a structure-exploiting parallel solver

Exploiting structure and parallelism

Exploiting parallelism in computations and storage

Factorize

proc n

proc n

proc 1

proc 1

Solve

x = L (y − B L D x)

nnn
−1

y = D z1

z = L b

1
−1

y = D z−T
nn
−1

1

n n

1

L D L

n

n n n n
−T −1 T

C
 =

 −

 CΣ

i
c

Φ
i

Φ = L D L

z = L b

n n

−
T

n n nl = B L D z

−T
11111l = B L D z−1

C = B L D L B

c
c

cx
=

 L
 y

1

n

1

n

Φ =

c
c

c−
1

T

1
−T

x = L (y − B L D x)n n n
−T

−T

−T

1 1 1
T

1 C = B L D L B1 1 1
−T

1 1 1
T−1

Σ i
i

l =
 b

 −

l
c

1 1 1 c11

cnnn

n C
 =

 L
 D

 L
c

T c
c

y
=

 D
 z−

1
c

c

n

z
=

 L
 l

Φ

Φ

c

n

1

n

n

T

T
1 x

y y y

x

xc

c

n

n

1

1

all processors

processor n

processor 1Φ

1B B

B

B

Communications

On all processors

On separate processors

OOPS: a structure-exploiting parallel solver

Multi-period financial planning problem

Multi-period financial planning problem

I A set of assets J = {1, ..., J} is given.

I Initial investment b.

I At every stage t = 0, . . . , T−1 we can buy or sell any assets.

I The return of asset j at stage t is uncertain.

Competing objectives:

I maximize the final wealth

I minimize the associated risk

Mean-Variance formulation (Markowitz): max IE (X) − ρVar(X).

X value of the final portfolio

ρ investor’s attitude to risk

OOPS: a structure-exploiting parallel solver

Multi-period financial planning problem

Modelling with event tree

2

1ξ

ξ (t,n)
(t−1,a(n))

(t,n−1)

With asset j ∈ J at node i = (t, n) we associate:

xh
i ,j position in asset j at node i

xb
i ,j ,x

s
i ,j amount of asset j bought/sold at node i

vj value of asset j

rj ,t return of asset j when held at time t

Li , Ci liabilities/cash contributions at node i

OOPS: a structure-exploiting parallel solver

Multi-period financial planning problem

Asset and Liability Management Problem I

Objective:

IE (X) = (1 − ct)
∑

i∈LT

pi

∑

j

vjx
h
i ,j = y

Var(X) =
∑

i∈LT

pi (1 − ct)
2
[∑

j

vjx
h
i ,j

]2 − y2

Constraints at each node i :

xh
i ,j = (1 + ri ,j)x

h
a(i),j + xb

i ,j − x s
i ,j (inventory)

∑

j

(1 + ct)vjx
b
i ,j + Li =

∑

j

(1 − ct)vjx
s
i ,j + Ci (cash balance)

OOPS: a structure-exploiting parallel solver

Multi-period financial planning problem

Asset and Liability Management Problem II

max
x ,y≥0

y − ρ

[∑

i∈LT

pi [(1 − ct)
∑

j

vjx
h
i ,j]

2 − y2
]

s.t. (1 − ct)
∑

i∈LT

pi

∑

j

vjx
h
i ,j = y

(1 + ri ,j)x
h
a(i),j = xh

i ,j − xb
i ,j + x s

i ,j ∀i , ∀j

∑

j

(1 + ct)vjx
b
i ,j +Li =

∑

j

(1 − ct)vjx
s
i ,j +Ci ∀i

∑

j

(1 + ct)vjx
b
0,j = b

OOPS: a structure-exploiting parallel solver

Multi-period financial planning problem

Structure of the objective I
Straightforward representation:

IE (X)−ρVar(X) = IE (X) − ρ[IE (X 2) − IE (X)2]

=
∑

i∈LT

pi

∑

j

vjx
h
ij − ρ

[

∑

i∈LT

pi

∑

j

(vjx
h
ij)

2−[
∑

i∈LT

pi

∑

j

vjx
h
ij]

2

]

Q

Q

Q

Q

Dense, positive semidefinite Hessian

OOPS: a structure-exploiting parallel solver

Multi-period financial planning problem

Structure of the objective II
Alternative representation:

IE (X) − ρVar(X) = y − ρ

[∑

i∈LT

pi

∑

j

(vjx
h
ij)

2 − y2
]

where: y =
∑

i∈LT

pi

∑

j

vjx
h
ij

−1

Q

Q

Q

Q

Sparse, indefinite Hessian

OOPS: a structure-exploiting parallel solver

Multi-period financial planning problem

Performance of OOPS

Problem Stgs Blks Assets Scens Cons Vars iter time procs

ALM1 5 10 5 11k 66k 166k 14 86 1
ALM2 6 10 5 111k 666k 1.6M 22 387 5
ALM3 6 10 10 111k 1.2M 3.3M 29 1638 5
ALM4 5 24 5 346k 2.1M 5.2M 33 856 8
ALM5 4 64 12 266k 3.4M 9.6M 18 1195 8
ALM6 4 120 5 1.7M 10.4M 26.1M 18 1470 16
ALM7 4 120 10 1.7M 19.1M 52.2M 19 8465 16
BG/L1 7 128 6 12.8M 64.1M 153.9M 42 3923 512
BG/L2 7 64 14 6.4M 96.2M 269.4M 39 4692 512
BG/L3 7 128 13 12.8M 179.6M 500.4M 45 6089 1024
HPCx 7 128 21 16.0M 352.8M 1,010M 53 3020 1280

OOPS: a structure-exploiting parallel solver

Multi-period financial planning problem

Conclusions and future work

I OOPS provides an efficient implementation of a
structure-exploiting parallel software

I Structure can be exploited both at the linear algebra level and
algorithmically (structured warmstarts)

I Application to grid computing

I Incorporation of iterative solvers (strucured preconditioners)

I Integration within a structured modelling language

OOPS: a structure-exploiting parallel solver

	Interior point methods
	Exploiting structure and parallelism
	Multi-period financial planning problem

